Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(5): 669-681.e5, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584681

RESUMO

Visceral pain is among the most prevalent and bothersome forms of chronic pain, but their transmission in the spinal cord is still poorly understood. Here, we conducted focal colorectal distention (fCRD) to drive both visceromotor responses (VMRs) and aversion. We first found that spinal CCK neurons were necessary for noxious fCRD to drive both VMRs and aversion under naive conditions. We next showed that spinal VGLUT3 neurons mediate visceral allodynia, whose ablation caused loss of aversion evoked by low-intensity fCRD in mice with gastrointestinal (GI) inflammation or spinal circuit disinhibition. Importantly, these neurons were dispensable for driving sensitized VMRs under both inflammatory and central disinhibition conditions. Anatomically, a subset of VGLUT3 neurons projected to parabrachial nuclei, whose photoactivation sufficiently generated aversion in mice with GI inflammation, without influencing VMRs. Our studies suggest the presence of different spinal substrates that transmit nociceptive versus affective dimensions of visceral sensory information.


Assuntos
Hiperalgesia , Medula Espinal , Proteínas Vesiculares de Transporte de Glutamato , Dor Visceral , Animais , Camundongos , Hiperalgesia/genética , Inflamação/complicações , Neurônios/fisiologia , Medula Espinal/fisiologia , Dor Visceral/etiologia , Dor Visceral/genética , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
2.
Curr Opin Neurobiol ; 76: 102602, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35780689

RESUMO

Acupuncture has been practiced for more than 2000 years in China and now all over the world. One core idea behind this medical practice is that stimulation at specific body regions (acupoints) can distantly modulate organ physiology, but the underlying scientific basis has been long debated. Here, I summarize evidence supporting that long-distant acupuncture effects operate partly through somato-autonomic reflexes, leading to activation of sympathetic and/or parasympathetic pathways. I then discuss how the patterning of the somatosensory system along the rostro-caudal axis and the cutaneous-deep tissue axis might explain acupoint specificity and selectivity in driving specific autonomic pathways, particularly those modulating gastrointestinal motility and systemic inflammation.


Assuntos
Terapia por Acupuntura , Pontos de Acupuntura
4.
Neuron ; 110(5): 749-769, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35016037

RESUMO

Somatosensory afferents are traditionally classified by soma size, myelination, and their response specificity to external and internal stimuli. Here, we propose the functional subdivision of the nociceptive somatosensory system into two branches. The exteroceptive branch detects external threats and drives reflexive-defensive reactions to prevent or limit injury. The interoceptive branch senses the disruption of body integrity, produces tonic pain with strong aversive emotional components, and drives self-caring responses toward to the injured region to reduce suffering. The central thesis behind this functional subdivision comes from a reflection on the dilemma faced by the pain research field, namely, the use of reflexive-defensive behaviors as surrogate assays for interoceptive tonic pain. The interpretation of these assays is now being challenged by the discovery of distinct but interwoven circuits that drive exteroceptive versus interoceptive types of behaviors, with the conflation of these two components contributing partially to the poor translation of therapies from preclinical studies.


Assuntos
Emoções , Dor , Humanos , Neurônios
5.
Nature ; 598(7882): 641-645, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34646018

RESUMO

Somatosensory autonomic reflexes allow electroacupuncture stimulation (ES) to modulate body physiology at distant sites1-6 (for example, suppressing severe systemic inflammation6-9). Since the 1970s, an emerging organizational rule about these reflexes has been the presence of body-region specificity1-6. For example, ES at the hindlimb ST36 acupoint but not the abdominal ST25 acupoint can drive the vagal-adrenal anti-inflammatory axis in mice10,11. The neuroanatomical basis of this somatotopic organization is, however, unknown. Here we show that PROKR2Cre-marked sensory neurons, which innervate the deep hindlimb fascia (for example, the periosteum) but not abdominal fascia (for example, the peritoneum), are crucial for driving the vagal-adrenal axis. Low-intensity ES at the ST36 site in mice with ablated PROKR2Cre-marked sensory neurons failed to activate hindbrain vagal efferent neurons or to drive catecholamine release from adrenal glands. As a result, ES no longer suppressed systemic inflammation induced by bacterial endotoxins. By contrast, spinal sympathetic reflexes evoked by high-intensity ES at both ST25 and ST36 sites were unaffected. We also show that optogenetic stimulation of PROKR2Cre-marked nerve terminals through the ST36 site is sufficient to drive the vagal-adrenal axis but not sympathetic reflexes. Furthermore, the distribution patterns of PROKR2Cre nerve fibres can retrospectively predict body regions at which low-intensity ES will or will not effectively produce anti-inflammatory effects. Our studies provide a neuroanatomical basis for the selectivity and specificity of acupoints in driving specific autonomic pathways.


Assuntos
Glândulas Suprarrenais/fisiologia , Sistema Nervoso Autônomo , Eletroacupuntura , Nervo Vago/fisiologia , Pontos de Acupuntura , Animais , Membro Posterior/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo
6.
Med Acupunct ; 32(6): 362-366, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362888

RESUMO

Objective: Acupuncture, as an important part of Traditional Chinese Medicine, has been practiced for thousands of years in China and now all over the world, but the underlying neuroanatomical basis is still poorly understood. This article explores how acupuncture drives autonomic reflexes and why the widely used Streitberger sham-needling control should be revisited. Method: This article summarizes modern studies, suggesting that functional connections between somatic tissues and internal organs may be explained via somato-autonomic reflexes. Results: Modern studies have revealed a few organizational rules regarding how acupuncture drives distinct somatosensory autonomic pathways, including acupoint selectivity and intensity dependence. Activation of these autonomic pathways modulates various body physiologic functions, such as gastrointestinal motility and systemic inflammation. Meanwhile, extensive anatomical and functional characterization of the somatosensory system raises a question about the widely used Streitberger sham-needling control. Specifically, the skin epidermis and hair follicles contain mechanically sensitive afferents, whose activation by this sham stimulation could modulate pain and the autonomic nervous system. Conclusions: A deeper understanding of the underlying neuroanatomical basis of acupuncture is crucial for optimizing stimulation parameters and designing proper sham-controls to demonstrate and improve the efficacy and the safety of using this modality to treat human conditions.

8.
Neuron ; 108(3): 436-450.e7, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32791039

RESUMO

The neuroanatomical basis behind acupuncture practice is still poorly understood. Here, we used intersectional genetic strategy to ablate NPY+ noradrenergic neurons and/or adrenal chromaffin cells. Using endotoxin-induced systemic inflammation as a model, we found that electroacupuncture stimulation (ES) drives sympathetic pathways in somatotopy- and intensity-dependent manners. Low-intensity ES at hindlimb regions drives the vagal-adrenal axis, producing anti-inflammatory effects that depend on NPY+ adrenal chromaffin cells. High-intensity ES at the abdomen activates NPY+ splenic noradrenergic neurons via the spinal-sympathetic axis; these neurons engage incoherent feedforward regulatory loops via activation of distinct adrenergic receptors (ARs), and their ES-evoked activation produces either anti- or pro-inflammatory effects due to disease-state-dependent changes in AR profiles. The revelation of somatotopic organization and intensity dependency in driving distinct autonomic pathways could form a road map for optimizing stimulation parameters to improve both efficacy and safety in using acupuncture as a therapeutic modality.


Assuntos
Eletroacupuntura , Neurônios/fisiologia , Neuropeptídeo Y/metabolismo , Sistema Nervoso Simpático/fisiologia , Animais , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Nature ; 565(7737): 86-90, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30532001

RESUMO

Animals and humans display two types of response to noxious stimuli. The first includes reflexive defensive responses that prevent or limit injury; a well-known example of these responses is the quick withdrawal of one's hand upon touching a hot object. When the first-line response fails to prevent tissue damage (for example, a finger is burnt), the resulting pain invokes a second-line coping response-such as licking the injured area to soothe suffering. However, the underlying neural circuits that drive these two strings of behaviour remain poorly understood. Here we show in mice that spinal neurons marked by coexpression of TAC1Cre and LBX1Flpo drive coping responses associated with pain. Ablation of these spinal neurons led to the loss of both persistent licking and conditioned aversion evoked by stimuli (including skin pinching and burn injury) that-in humans-produce sustained pain, without affecting any of the reflexive defensive reactions that we tested. This selective indifference to sustained pain resembles the phenotype seen in humans with lesions of medial thalamic nuclei1-3. Consistently, spinal TAC1-lineage neurons are connected to medial thalamic nuclei by direct projections and via indirect routes through the superior lateral parabrachial nuclei. Furthermore, the anatomical and functional segregation observed at the spinal level also applies to primary sensory neurons. For example, in response to noxious mechanical stimuli, MRGPRD- and TRPV1-positive nociceptors are required to elicit reflexive and coping responses, respectively. Our study therefore reveals a fundamental subdivision within the cutaneous somatosensory system, and challenges the validity of using reflexive defensive responses to measure sustained pain.


Assuntos
Adaptação Psicológica/fisiologia , Dor Crônica/fisiopatologia , Dor Crônica/psicologia , Vias Neurais/fisiologia , Animais , Aprendizagem da Esquiva , Condicionamento Clássico , Feminino , Humanos , Masculino , Núcleo Mediodorsal do Tálamo/citologia , Núcleo Mediodorsal do Tálamo/fisiologia , Camundongos , Neurônios Aferentes/fisiologia , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/fisiologia , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPV/metabolismo , Taquicininas/genética , Taquicininas/metabolismo
10.
Neuron ; 99(5): 941-955.e4, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30122375

RESUMO

The gate control theory proposes that Aß mechanoreceptor inputs to spinal pain transmission T neurons are gated via feedforward inhibition, but it remains unclear how monosynaptic excitation is gated by disynaptic inhibitory inputs that arrive later. Here we report that Aß-evoked, non-NMDAR-dependent EPSPs in T neurons are subthreshold, allowing time for inhibitory inputs to prevent action potential firing that requires slow-onset NMDAR activation. Potassium channel activities-including IA, whose sizes are established constitutively by PreprodynorphinCre-derived inhibitory neurons-either completely filter away Aß inputs or make them subthreshold, thereby creating a permissive condition to achieve gate control. Capsaicin-activated nociceptor inputs reduce IA and sensitize the T neurons, allowing Aß inputs to cause firing before inhibitory inputs arrive. Thus, distinct kinetics of glutamate receptors and electric filtering by potassium channels solve the timing problem underlying the gating by feedforward inhibition, and their modulation offers a way to bypass the gate control.


Assuntos
Ativação do Canal Iônico/fisiologia , Inibição Neural/fisiologia , Medula Espinal/fisiologia , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/fisiologia , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Fatores de Tempo
11.
Neurosci Bull ; 34(1): 186-193, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28484964

RESUMO

In 1905, Henry Head first suggested that transmission of pain-related protopathic information can be negatively modulated by inputs from afferents sensing innocuous touch and temperature. In 1965, Melzak and Wall proposed a more concrete gate control theory of pain that highlights the interaction between unmyelinated C fibers and myelinated A fibers in pain transmission. Here we review the current understanding of the spinal microcircuits transmitting and gating mechanical pain or itch. We also discuss how disruption of the gate control could cause pain or itch evoked by innocuous mechanical stimuli, a hallmark symptom for many chronic pain or itch patients.


Assuntos
Rede Nervosa/patologia , Dor/patologia , Prurido/patologia , Medula Espinal/patologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Rede Nervosa/fisiopatologia
12.
J Neurosci ; 37(22): 5549-5561, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28476948

RESUMO

The somatic sensory neurons in dorsal root ganglia (DRG) detect and transmit a diverse array of sensory modalities, such as pain, itch, cold, warm, touch, and others. Recent genetic and single-cell RNA sequencing studies have revealed a group of DRG neurons that could be particularly relevant for acute and chronic itch information transmission. They express the natriuretic peptide type B (NPPB), as well as a cohort of receptors and neuropeptides that have been implicated in chronic itch manifestation, including the interleukin-31 receptor A (IL-31ra) and its coreceptor oncostatin M receptor (Osmr), the cysteinyl leukotriene receptor 2 (Cysltr2), somatostatin, and neurotensin. However, how these neurons are generated during development remains unclear. Here we report that Runx1 is required to establish all these molecular features of NPPB+ neurons. We further show that while early embryonic Runx1 activity is required for the formation of NPPB+ cells, at later stages Runx1 switches to a genetic repressor and thus its downregulation becomes a prerequisite for the proper development of these pruriceptors. This mode by Runx1 is analogous to that in controlling another group of pruriceptors that specifically express the chloroquine receptor MrgprA3. Finally, behavioral studies using both sexes of mice revealed marked deficits in processing acute and chronic itch in Runx1 conditional knock-out mice, possibly attributable to impaired development of various pruriceptors.SIGNIFICANCE STATEMENT Our studies reveal a generalized control mode by Runx1 for pruriceptor development and consolidate a hierarchical control mechanism for the formation of sensory neurons transmitting distinct modalities. Among dorsal root ganglion neurons that initially express the neurotrophin receptor TrkA, Runx1 is necessary for the proper development of those neurons that innervate tissues derived from the ectoderm such as skin epidermis and hair follicles. These Runx1-dependent cutaneous sensory neurons are then divided into two groups based on persistent or transient Runx1 expression. The Runx1-persistent group is involved in transmitting mechanical and thermal information, whereas the Runx1-transient group transmits pruriceptive information. Such hierarchical control mechanisms may provide a developmental solution for the formation of sensory circuits that transmit distinct modalities.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Gânglios Espinais/metabolismo , Prurido/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
13.
Nat Neurosci ; 20(6): 804-814, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28436981

RESUMO

Mechanical hypersensitivity is a debilitating symptom for millions of chronic pain patients. It exists in distinct forms, including brush-evoked dynamic and filament-evoked punctate hypersensitivities. We reduced dynamic mechanical hypersensitivity induced by nerve injury or inflammation in mice by ablating a group of adult spinal neurons defined by developmental co-expression of VGLUT3 and Lbx1 (VT3Lbx1 neurons): the mice lost brush-evoked nocifensive responses and conditional place aversion. Electrophysiological recordings show that VT3Lbx1 neurons form morphine-resistant polysynaptic pathways relaying inputs from low-threshold Aß mechanoreceptors to lamina I output neurons. The subset of somatostatin-lineage neurons preserved in VT3Lbx1-neuron-ablated mice is largely sufficient to mediate morphine-sensitive and morphine-resistant forms of von Frey filament-evoked punctate mechanical hypersensitivity. Furthermore, acute silencing of VT3Lbx1 neurons attenuated pre-established dynamic mechanical hypersensitivity induced by nerve injury, suggesting that these neurons may be a cellular target for treating this form of neuropathic pain.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Neurônios/fisiologia , Medula Espinal/fisiologia , Tato/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/biossíntese , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Aprendizagem da Esquiva/fisiologia , Clozapina/farmacologia , Toxina Diftérica/farmacologia , Feminino , Técnicas de Introdução de Genes , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Morfina/farmacologia , Proteínas Musculares/biossíntese , Fibras Nervosas Amielínicas/fisiologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Medição da Dor/efeitos dos fármacos , Somatostatina/fisiologia , Medula Espinal/efeitos dos fármacos
14.
Science ; 350(6260): 550-4, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26516282

RESUMO

Light mechanical stimulation of hairy skin can induce a form of itch known as mechanical itch. This itch sensation is normally suppressed by inputs from mechanoreceptors; however, in many forms of chronic itch, including alloknesis, this gating mechanism is lost. Here we demonstrate that a population of spinal inhibitory interneurons that are defined by the expression of neuropeptide Y::Cre (NPY::Cre) act to gate mechanical itch. Mice in which dorsal NPY::Cre-derived neurons are selectively ablated or silenced develop mechanical itch without an increase in sensitivity to chemical itch or pain. This chronic itch state is histamine-independent and is transmitted independently of neurons that express the gastrin-releasing peptide receptor. Thus, our studies reveal a dedicated spinal cord inhibitory pathway that gates the transmission of mechanical itch.


Assuntos
Interneurônios/fisiologia , Mecanotransdução Celular/fisiologia , Inibição Neural , Prurido/fisiopatologia , Medula Espinal/fisiologia , Transmissão Sináptica , Potenciais de Ação , Animais , Cabelo/fisiologia , Mecanorreceptores/fisiologia , Mecanotransdução Celular/genética , Camundongos , Camundongos Transgênicos , Neuropeptídeo Y/genética , Neuropeptídeo Y/fisiologia , Pele/inervação
15.
J Neurosci ; 35(13): 5317-29, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834056

RESUMO

Mammalian skin is innervated by diverse, unmyelinated C fibers that are associated with senses of pain, itch, temperature, or touch. A key developmental question is how this neuronal cell diversity is generated during development. We reported previously that the runt domain transcription factor Runx1 is required to coordinate the development of these unmyelinated cutaneous sensory neurons, including VGLUT3(+) low-threshold c-mechanoreceptors (CLTMs), MrgprD(+) polymodal nociceptors, MrgprA3(+) pruriceptors, MrgprB4(+) c-mechanoreceptors, and others. However, how these Runx1-dependent cutaneous sensory neurons are further segregated is poorly illustrated. Here, we find that the Runx1-dependent transcription factor gene Zfp521 is expressed in, and required for establishing molecular features that define, VGLUT3(+) CLTMs. Furthermore, Runx1 and Zfp521 form a classic incoherent feedforward loop (I-FFL) in controlling molecular identities that normally belong to MrgprD(+) neurons, with Runx1 and Zfp51 playing activator and repressor roles, respectively (in genetic terms). A knock-out of Zfp521 allows prospective VGLUT3 lineage neurons to acquire MrgprD(+) neuron identities. Furthermore, Runx1 might form other I-FFLs to regulate the expression of MrgprA3 and MrgprB4, a mechanism preventing these genes from being expressed in Runx1-persistent VGLUT3(+) and MrgprD(+) neurons. The evolvement of these I-FFLs provides an explanation for how modality-selective sensory subtypes are formed during development and may also have intriguing implications for sensory neuron evolution and sensory coding.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Mecanorreceptores/fisiologia , Nociceptores/fisiologia , Fatores de Transcrição/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Animais , Contagem de Células , Diferenciação Celular/genética , Gânglios Espinais/crescimento & desenvolvimento , Gânglios Espinais/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
17.
Elife ; 32014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25525749

RESUMO

The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation.


Assuntos
Perfilação da Expressão Gênica , Células Receptoras Sensoriais/metabolismo , Transcrição Gênica , Animais , Separação Celular , Análise por Conglomerados , Citometria de Fluxo , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Camundongos , Técnicas de Patch-Clamp , Análise de Componente Principal
18.
Cell ; 159(6): 1417-1432, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25467445

RESUMO

Pain information processing in the spinal cord has been postulated to rely on nociceptive transmission (T) neurons receiving inputs from nociceptors and Aß mechanoreceptors, with Aß inputs gated through feed-forward activation of spinal inhibitory neurons (INs). Here, we used intersectional genetic manipulations to identify these critical components of pain transduction. Marking and ablating six populations of spinal excitatory and inhibitory neurons, coupled with behavioral and electrophysiological analysis, showed that excitatory neurons expressing somatostatin (SOM) include T-type cells, whose ablation causes loss of mechanical pain. Inhibitory neurons marked by the expression of dynorphin (Dyn) represent INs, which are necessary to gate Aß fibers from activating SOM(+) neurons to evoke pain. Therefore, peripheral mechanical nociceptors and Aß mechanoreceptors, together with spinal SOM(+) excitatory and Dyn(+) inhibitory neurons, form a microcircuit that transmits and gates mechanical pain. PAPERCLIP:


Assuntos
Neurônios/fisiologia , Dor/metabolismo , Medula Espinal/fisiologia , Animais , Dinorfinas/metabolismo , Mecanorreceptores/metabolismo , Camundongos , Percepção da Dor , Somatostatina/metabolismo
19.
Cell ; 157(3): 531-3, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24766802

RESUMO

How the Merkel cell-neurite complex transduces and encodes touch remains unclear. Ikeda et al. now implicate Merkel cells as the primary sites of tactile transduction and the ion channel Piezo2 as the chief mechanotransducer. Surprisingly, Merkel cells also mediate allodynia, providing a new cellular target for chronic pain treatment.


Assuntos
Canais Iônicos/metabolismo , Células de Merkel/metabolismo , Tato , Vibrissas/citologia , Vibrissas/fisiologia , Animais
20.
Nat Neurosci ; 17(2): 183-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24473266

RESUMO

Noxious stimuli usually cause pain and pain usually arises from noxious stimuli, but exceptions to these apparent truisms are the basis for clinically important problems and provide valuable insight into the neural code for pain. In this Review, we discuss how painful sensations arise. We argue that, although primary somatosensory afferents are tuned to specific stimulus features, natural stimuli often activate more than one type of afferent. Manipulating coactivation patterns can alter perception in ways that argue against each type of afferent acting independently (as expected for strictly labeled lines), suggesting instead that signals conveyed by different types of afferents interact. Deciphering the central circuits that mediate those interactions is critical for explaining the generation and modulation of neural signals that ultimately elicit pain. The advent of genetic and optical dissection techniques promise to dramatically accelerate progress toward this goal, which will facilitate the rational design of future pain therapeutics.


Assuntos
Vias Aferentes/fisiologia , Nociceptores/fisiologia , Dor/etiologia , Dor/patologia , Animais , Humanos , Modelos Biológicos , Percepção , Estimulação Física/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA