Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(3): e2315259121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194449

RESUMO

Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity toward canonical snRNAs through their Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.


Assuntos
Exonucleases , RNA Nuclear Pequeno , RNA Nuclear Pequeno/genética , RNA , Mutação , Controle de Qualidade
2.
Nat Chem Biol ; 19(11): 1320-1330, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37783940

RESUMO

Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse human proteins. Determining which of these covalent binding events affect protein function, however, remains challenging. Here we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cancer cell proliferation. The resulting atlas, which covers more than 13,800 cysteines on more than 1,750 cancer dependency proteins, confirms the essentiality of cysteines targeted by covalent drugs and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines in more than 160 cancer dependency proteins. We further show that a stereoselective and site-specific ligand targeting an essential cysteine in TOE1 inhibits the nuclease activity of this protein through an apparent allosteric mechanism. Our findings thus describe a versatile method and valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.


Assuntos
Cisteína , Neoplasias , Humanos , Cisteína/química , Proteômica , Edição de Genes , Proteoma/química , Neoplasias/genética , Proteínas Nucleares
3.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645788

RESUMO

Competing exonucleases that promote 3' end maturation or degradation direct quality control of small non-coding RNAs, but how these enzymes distinguish normal from aberrant RNAs is poorly understood. The Pontocerebellar Hypoplasia 7 (PCH7)-associated 3' exonuclease TOE1 promotes maturation of canonical small nuclear RNAs (snRNAs). Here, we demonstrate that TOE1 achieves specificity towards canonical snRNAs by recognizing Sm complex assembly and cap trimethylation, two features that distinguish snRNAs undergoing correct biogenesis from other small non-coding RNAs. Indeed, disruption of Sm complex assembly via snRNA mutations or protein depletions obstructs snRNA processing by TOE1, and in vitro snRNA processing by TOE1 is stimulated by a trimethylated cap. An unstable snRNA variant that normally fails to undergo maturation becomes fully processed by TOE1 when its degenerate Sm binding motif is converted into a canonical one. Our findings uncover the molecular basis for how TOE1 distinguishes snRNAs from other small non-coding RNAs and explain how TOE1 promotes maturation specifically of canonical snRNAs undergoing proper processing.

4.
Biotechnol Biofuels ; 11: 112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29686730

RESUMO

BACKGROUND: The recombinant Saccharomyces cerevisiae strains that acquired the ability to utilize xylose through metabolic and evolutionary engineering exhibit good performance when xylose is the sole carbon source in the medium (designated the X stage in the present work). However, the xylose consumption rate of strains is generally low after glucose depletion during glucose-xylose co-fermentation, despite the presence of xylose in the medium (designated the GX stage in the present work). Glucose fermentation appears to reduce the capacity of these strains to "recognize" xylose during the GX stage, a phenomenon termed the post-glucose effect on xylose metabolism. RESULTS: Two independent xylose-fermenting S. cerevisiae strains derived from a haploid laboratory strain and a diploid industrial strain were used in the present study. Their common characteristics were investigated to reveal the mechanism underlying the post-glucose effect and to develop methods to alleviate this effect. Both strains showed lower growth and specific xylose consumption rates during the GX stage than during the X stage. Glycolysis, the pentose phosphate pathway, and translation-related gene expression were reduced; meanwhile, genes in the tricarboxylic acid cycle and glyoxylic acid cycle demonstrated higher expression during the GX stage than during the X stage. The effects of 11 transcription factors (TFs) whose expression levels significantly differed between the GX and X stages in both strains were investigated. Knockout of THI2 promoted ribosome synthesis, and the growth rate, specific xylose utilization rate, and specific ethanol production rate of the strain increased by 17.4, 26.8, and 32.4%, respectively, in the GX stage. Overexpression of the ribosome-related genes RPL9A, RPL7B, and RPL7A also enhanced xylose utilization in a corresponding manner. Furthermore, the overexpression of NRM1, which is related to the cell cycle, increased the growth rate by 8.7%, the xylose utilization rate by 30.0%, and the ethanol production rate by 76.6%. CONCLUSIONS: The TFs Thi2p and Nrm1p exerted unexpected effects on the post-glucose effect, enhancing ribosome synthesis and altering the cell cycle, respectively. The results of this study will aid in maintaining highly efficient xylose metabolism during glucose-xylose co-fermentation, which is utilized for lignocellulosic bioethanol production.

5.
Chemistry ; 23(30): 7278-7286, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28370495

RESUMO

Honeycomb-structured films represent an intriguing class of two-dimensional porous materials. Specifically, polyoxometalate (POM) macroanions can be introduced into these films by complexing with oppositely charged, double-tailed surfactants. Here highly-ordered honeycomb structures are reported that can be constructed by the complexes between POMs and a room temperature ionic liquid (IL1) having an imidazolium moiety in the middle and a naphthyl unit and a branched aliphatic chain at the ends. The complexes can be produced through phase transfer between an aqueous solution of POMs (typically {Mo72 Fe30 }) and a CS2 (or chloroform) solution of IL1. Based on the intrinsic properties of {Mo72 Fe30 } and the functional groups of the IL1, the honeycomb structures show multiple functions with bright photoluminescence and rich electrochemical properties. This work shows that by simply engineering the organic ligands involved in the POM-based inorganic-organic complexes, supramolecular structures with improved properties and wide applications can be obtained.

6.
Apoptosis ; 16(4): 370-81, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21197579

RESUMO

Multiple myelomas (MMs) are etiologically heterogeneous and there are limited treatment options; indeed, current monoclonal antibody therapies have had limited success, so more effective antibodies are urgently needed. Polyclonal antibodies are a possible alternative because they target multiple antigens simultaneously. In this study, we produced polyclonal rabbit anti-murine plasmacytoma cell immunoglobulin (PAb) by immunizing rabbits with the murine plasmacytoma cell line MPC-11. The isolated PAb bound to plasma surface antigens in several MM cell lines, inhibited their proliferation as revealed by MTT assay, and induce apoptosis as indicated by flow cytometry, microscopic observation of apoptotic changes in morphology, and DNA fragmentation on agarose gels. The cytotoxicity of PAb on MPC-11 cell lines was both dose-dependent and time-dependent; PAb exerted a 50% inhibitory effect on MPC-11 cell viability at a concentration of 200 µg/ml in 48 h. Flow cytometry demonstrated that PAb treatment significantly increased the number of apoptotic cells (48.1%) compared with control IgG (8.3%). Apoptosis triggered by PAb was confirmed by activation of caspase-3, -8, and -9. Serial intravenous or intraperitoneal injections of PAb inhibited tumour growth and prolonged survival in mice bearing murine plasmacytoma, while TUNEL assay demonstrated that PAb induced statistically significant apoptosis (P < 0.05) compared to control treatments. We conclude that PAb is an effective agent for in vitro and in vivo induction of apoptosis in multiple myeloma and that exploratory clinical trials may be warranted.


Assuntos
Apoptose/efeitos dos fármacos , Imunoglobulinas/farmacologia , Mieloma Múltiplo/patologia , Plasmocitoma/metabolismo , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Ligação Proteica/efeitos dos fármacos , Coelhos
7.
J Cancer Res Clin Oncol ; 137(1): 19-28, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20217127

RESUMO

PURPOSE: Patients with localized prostate cancer can usually achieve initial response to conventional treatment. However, most of them will inevitably progress to advanced disease stage. There is a clear need to develop innovative and effective therapeutics for prostate cancer. Mouse survivin T34A (mS-T34A) is a phosphorylation-defective Thr34 → Ala dominant negative mutant, which represents a potential promising target for cancer gene therapy. This study was designed to determine whether mS-T34A plasmid encapsuled by DOTAP-chol liposome (Lip-mS) has the anti-tumor activity against prostate cancer, if so, to further investigate the possible mechanisms. METHODS: In vitro, TRAMP-C1 cells were transfected with Lip-mS and examined for apoptosis by PI staining and flow cytometric analysis. In vivo, subcutaneous prostate cancer models were established in C57BL/6 mice, which were randomly assigned into three groups to receive i.v. administrations of Lip-mS, pVITRO2-null plasmid complexed with DOTAP-chol liposome (Lip-null) or normal saline every 2 days for eight doses. Tumor volume was measured. Tumor tissues were inspected for apoptosis by TUNEL assay. Microvessel density (MVD) was determined by CD31 immunohistochemistry. Alginate-encapsulated tumor cell test was conducted to evaluate the treatment effect on angiogenesis. RESULTS: Administration of Lip-mS resulted in significant inhibition in the growth of mouse TRAMP-C1 tumors. The anti-tumor response was associated with increased tumor cell apoptosis and decreased microvessel density. CONCLUSIONS: The present study may be of importance in the exploration of the potential application of Lip-mS in the treatment of a broad spectrum of tumors.


Assuntos
Proteínas Inibidoras de Apoptose/genética , Mutação , Neoplasias da Próstata/terapia , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Ácidos Graxos Monoinsaturados/administração & dosagem , Terapia Genética , Proteínas Inibidoras de Apoptose/uso terapêutico , Lipossomos/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Compostos de Amônio Quaternário/administração & dosagem , Proteínas Repressoras/uso terapêutico , Survivina
8.
Cancer Sci ; 101(11): 2325-32, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20804499

RESUMO

Murine studies have shown that immunological targeting of fibroblast activation protein (FAP) can elicit protective immunity in the absence of significant pathology. Fibroblast activation protein is a product overexpressed by tumor-associated fibroblasts (TAF) and is the predominant component of the stoma in most types of cancer. Tumor-associated fibroblasts differ from normal adult tissue fibroblasts, and instead resemble transient fetal and wound healing-associated fibroblasts. Tumor-associated fibroblasts are critical regulators of tumorigenesis, but differ from tumor cells by being more genetically stable. Therefore, in comparison to tumor cells, TAF may represent more viable therapeutic targets for cancer immunotherapy. To specifically target TAF, we constructed a DNA vaccine directed against FAP. This vaccine significantly suppressed primary tumor and pulmonary metastases primarily through CD8(+) T-cell-mediated killing in tumor-bearing mice. Most importantly, tumor-bearing mice vaccinated against FAP exhibited a 1.5-fold increase in lifespan and no significant pathology. These results suggest that FAP, a product preferentially expressed by TAF, could function as an effective tumor rejection antigen.


Assuntos
Neoplasias do Colo/terapia , Gelatinases/imunologia , Imunoterapia/métodos , Proteínas de Membrana/imunologia , Serina Endopeptidases/imunologia , Vacinas de DNA/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/imunologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Endopeptidases , Feminino , Fibroblastos/imunologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Gelatinases/genética , Gelatinases/metabolismo , Humanos , Imunização/métodos , Imuno-Histoquímica , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Análise de Sobrevida , Carga Tumoral/imunologia , Vacinas de DNA/genética
9.
Oncol Rep ; 23(1): 97-103, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19956869

RESUMO

Radiosensitivity of tumors is due to a complex interaction of various factors, it has been reported that survivin also acts as a constitutive and inducible radioresistance factor in a panel of tumor cells and approaches designed to inhibit survivin expression or function may lead to tumor sensitisation to chemical and physical agents. Previously, we found that the plasmid encoding the phosphorylation-defective mouse survivin threonine 34-->alanine mutant complexed to DOTAP-chol liposome (Lip-mS) can suppress murine primary breast carcinoma. However, little is known regarding the biological effect of Lip-mS combined with radiation. The present study was designed to determine whether Lip-mS could enhance the anti-tumor activity of radiation. The Lewis Lung Carcinoma (LLC) cells treated with a combination of Lip-mS and radiation displayed apparently increased apoptosis compared with those treated with Lip-mS or radiation alone. Mice bearing LLC tumors were treated with intravenous injections of Lip-mS and radiation, the combined treatment significantly reduced mean tumor volume compared with either treatment alone. Moreover, the anti-tumor effect of Lip-mS combined with radiation was greater than their additive effect when compared with the expected effect of the combined treatment. These data suggest that inhibition of survivin using a dominant-negative mutant, survivin T34A, could sensitize LLC cells to radiation efficiently and the synergistic anti-tumor activity may in part result from increasing the apoptosis of tumor cells, inhibiting tumor angiogenesis and inducing a tumor-protective immune response in the combined treatment.


Assuntos
Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/radioterapia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Tolerância a Radiação/genética , Animais , Apoptose , Colesterol/farmacologia , Terapia Combinada/métodos , Ácidos Graxos Monoinsaturados/farmacologia , Genes Dominantes , Proteínas Inibidoras de Apoptose , Lipossomos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmídeos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/biossíntese , Compostos de Amônio Quaternário/farmacologia , Radioterapia/métodos , Proteínas Repressoras , Survivina , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA