Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Phytomedicine ; 133: 155931, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116604

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common reproductive endocrine disorders. Accumulated evidence has suggested the indispensable role of kisspeptin-G protein-coupled receptor (GPR54) system and SHBG in development of PCOS. However, potential mechanisms and their relationship are unclear. Jiawei Buzhong Yiqi Decoction (JWBZYQ) has been reported to ameliorate obese PCOS. Whereas, potential mechanisms remain elusive. PURPOSE: To determine whether JWBZYQ attenuates PCOS by regulating the kisspeptin-GPR54 system and SHBG production. And to explore potential mechanisms. METHODS: An overweight PCOS rat model was developed with testosterone propionate (TP) and high-fat diet (HFD). The efficacy of JWBZYQ was assessed by tracking changes in weight, estrous cycle, ovarian morphology, and serum sex hormone levels. Additionally, kisspeptin-GPR54 system expression in multiple organs and PI3K-AKT pathway activity in liver of different rats were detected. Modifications in SHBG production were also measured. Kisspeptin54 was administered to establish a cellular model. The levels of AKT phosphorylation and SHBG protein within HepG2 cells were analyzed. Finally, confirmatory studies were performed using AKT phosphorylation activator and inhibitor. RESULTS: JWBZYQ effectively attenuated the overweight, disrupted estrous cycle, altered sex hormone levels, and aberrant ovarian morphology in PCOS rats. Meanwhile, PCOS rats exhibited elevated levels of kisspeptin and GPR54, along with reduced SHBG levels, which could be reversed by JWBZYQ. These alterations might be connected with the activation of AKT phosphorylation. In vitro experiment identified that JWBZYQ could rectify the hyperactivated AKT phosphorylation and deficient production of SHBG caused by kisspeptin54. CONCLUSIONS: Overexpressed kisspeptin-GPR54 system inhibited SHBG synthesis in PCOS. JWBZYQ curtailed the exorbitant expression of kisspeptin and GPR54, which moderated the rise in AKT phosphorylation and subsequently promoted the production of SHBG.


Assuntos
Medicamentos de Ervas Chinesas , Kisspeptinas , Síndrome do Ovário Policístico , Proteínas Proto-Oncogênicas c-akt , Ratos Sprague-Dawley , Receptores de Kisspeptina-1 , Globulina de Ligação a Hormônio Sexual , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/metabolismo , Animais , Feminino , Kisspeptinas/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Kisspeptina-1/metabolismo , Globulina de Ligação a Hormônio Sexual/metabolismo , Ratos , Modelos Animais de Doenças , Dieta Hiperlipídica , Ovário/efeitos dos fármacos , Ovário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Propionato de Testosterona
2.
Microbiol Res ; 288: 127838, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153466

RESUMO

With the imbalance of intestinal microbiota, the body will then face an inflammatory response, which has serious implications for human health. Bodily allergies, injury or pathogens infections can trigger or promote inflammation and alter the intestinal environment. Meanwhile, excessive changes in the intestinal environment cause the imbalance of microbial homeostasis, which leads to the proliferation and colonization of opportunistic pathogens, invasion of the body's immune system, and the intensification of inflammation. Some natural compounds and gut microbiota and metabolites can reduce inflammation; however, the details of how they interact with the gut immune system and reduce the gut inflammatory response still need to be fully understood. The review focuses on inflammation and intestinal microbiota imbalance caused by pathogens. The body reacts differently to different types of pathogenic bacteria, and the ingestion of pathogens leads to inflamed gastrointestinal tract disorders or intestinal inflammation. In this paper, unraveling the interactions between the inflammation, pathogenic bacteria, and intestinal microbiota based on inflammation caused by several common pathogens. Finally, we summarize the effects of intestinal metabolites and natural anti-inflammatory substances on inflammation to provide help for related research of intestinal inflammation caused by pathogenic bacteria.


Assuntos
Bactérias , Microbioma Gastrointestinal , Inflamação , Humanos , Inflamação/microbiologia , Inflamação/metabolismo , Animais , Bactérias/metabolismo , Bactérias/classificação , Intestinos/microbiologia , Anti-Inflamatórios/metabolismo , Homeostase , Disbiose/microbiologia
3.
Phys Med Biol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079556

RESUMO

Cancer has a high incidence and lethality rate, which is a significant threat to human health. With the development of high-throughput technologies, different types of cancer genomics data have been accumulated, including genomics, epigenomics, transcriptomics, proteomics, and metabolomics. A comprehensive analysis of various omics data is needed to understand the underlying mechanisms of tumor development. However, integrating such a massive amount of data is one of the main challenges today. Artificial intelligence techniques such as machine learning are now becoming practical tools for analyzing and understanding multi-omics data on diseases. Enabling great optimization of existing research paradigms for cancer screening, diagnosis, and treatment. In addition, intelligent healthcare has received widespread attention with the development of healthcare informatization. As an essential part of innovative healthcare, practical, intelligent prognosis analysis and personalized treatment for cancer patients are also necessary. This paper introduces the advanced multi-omics data analysis technology in recent years, presents the cases and advantages of the combination of both omics data and artificial intelligence applied to cancer diseases, and finally briefly describes the challenges faced by multi-omics analysis and artificial intelligence at the current stage, aiming to provide new perspectives for oncology research and the possibility of personalized cancer treatment. .

4.
Lancet Reg Health West Pac ; 48: 101111, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38948912

RESUMO

Antimicrobial resistance (AMR) poses a multifaceted threat to the human, animal, and environment sectors. In response, China has formulated a series of policies since the 2000s. Thus far, there has been no comprehensive assessment of these policy documents. This study aims to review the content of AMR policy documents at the national level using a governance framework covering three areas: Policy Design; Implementation Tools; and Monitoring and Evaluation. We identified 44 AMR documents from 2003 to 2022 sourced from government agency websites. Our findings have revealed noticeable discrepancies across the three governance areas. The Policy Design and Monitoring and Evaluation areas should be strengthened, particularly in the domains of 'Coordination', 'Accountability', 'Sustainability', and 'Effectiveness'. From a 'One Health' perspective, the environment sector has received less attention compared to the human and animal sectors. Effectively addressing these challenges requires a stronger commitment and widespread support from diverse stakeholders.

5.
Angew Chem Int Ed Engl ; 63(31): e202406597, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38757727

RESUMO

Artificial interfaces provide a comprehensive approach to controlling zinc dendrite and surface corrosion in zinc-based aqueous batteries (ZABs). However, due to consistent volume changes during zinc plating/stripping, traditional interfacial layers cannot consistently adapt to the dendrite surface, resulting in uncontrolled dendrite growth and hydrogen evolution. Herein, dynamic covalent bonds exhibit the Janus effect towards zinc deposition at different current densities, presenting a holistic strategy for stabilizing zinc anode. The PBSC intelligent artificial interface consisting of dynamic B-O covalent bonds is developed on zinc anode to mitigate hydrogen evolution and restrict dendrite expansion. Owing to the reversible dynamic bonds, PBSC exhibits shape self-adaptive characteristics at low current rates, which rearranges the network to accommodate volume changes during zinc plating/stripping, resisting hydrogen evolution. Moreover, the rapid association of B-O dynamic bonds enhances mechanical strength at dendrite tips, presenting a shear-thickening effect and suppressing further dendrite growth at high current rates. Therefore, the assembled symmetrical battery with PBSC maintains a stable cycle of 4500 hours without significant performance degradation and the PBSC@Zn||V2O5 pouch cell demonstrates a specific capacity exceeding 170 mAh g-1. Overall, the intelligent interface with dynamic covalent bonds provides innovative approaches for zinc anode interfacial engineering and enhances cycling performance.

6.
Phytomedicine ; 129: 155630, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678952

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is a tricky puzzle in the field of female reproductive medicine. Bushen Huoxue recipe (BHR), a traditional Chinese medicine compound based on the combination of kidney-tonifying and blood-activating functions, has shown excellent efficacy in improving female irregular menstruation, POI, and infertility. However, the potential mechanism of BHR in POI treatment has not yet been elucidated. Bone marrow mesenchymal stem cells (BMSCs), a type of pluripotent stem cells, have received increasing attention for their significant role in improving ovarian function and restoring fertility in women with POI. PURPOSE: This study aimed to evaluate the therapeutic effect of BHR in POI mice and explore its potential mechanism. METHODS: A POI mouse model was established with a single intraperitoneal injection of 120 mg/kg cyclophosphamide (CTX). Distilled water, BHR, or dehydroepiandrosterone was administered via gavage for 28 consecutive days. The effect of BHR on ovarian function in POI mice was evaluated by assessing the estrous cycle, ovarian morphology, follicular development, hormone levels, and angiogenesis. The proportion of BMSCs in bone marrow, peripheral blood, and ovary was analyzed via flow cytometry, and the level of molecules mediating migration and homing in ovary was measured. Cell viability assays, scratch healing assays and transwell migration assays were performed to explore the effect of BHR on BMSCs proliferation and migration in vitro, and its potential mechanism was explored. RESULTS: BHR significantly ameliorated estrous cycle disorders, hormone disorders, ovarian morphology, ovarian microvascular formation, and ovarian reserve in POI mice. Meanwhile, the number of BMSCs number in the bone marrow, peripheral blood, and ovary was apparently increased. Of note, BHR increased the level of hepatocyte growth factor (HGF)/cellular mesenchymal epithelial transition factor (cMET) and stromal cell-derived factor-1(SDF-1)/CXC chemokine receptor 4 (CXCR4) in the ovaries of POI mice. Moreover, BHR treatment promoted BMSCs proliferation and migration in vitro, with a significant increase in the level of proliferating cell nuclear antigen, cMET, and CXCR4. CONCLUSIONS: BHR effectively restored ovarian reserve, ovarian function, and ovarian angiogenesis in CTX-induced POI mice. In addition, BHR promoted BMSCs proliferation, migration, and homing to the ovary, which was mediated by the SDF-1/CXCR4 and HGF/cMET signaling axis. Finally, the amelioration of ovarian reserve and ovarian function in CTX-induced POI mice by BHR may be related to its promotion of endogenous BMSCs proliferation and homing.


Assuntos
Proliferação de Células , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Células-Tronco Mesenquimais , Ovário , Insuficiência Ovariana Primária , Animais , Feminino , Medicamentos de Ervas Chinesas/farmacologia , Insuficiência Ovariana Primária/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Ovário/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Camundongos , Ciclofosfamida , Ciclo Estral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
7.
Vet Res ; 55(1): 37, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532498

RESUMO

In the last decade, prophages that possess the ability of lysogenic transformation have become increasingly significant. Their transfer and subsequent activity in the host have a significant impact on the evolution of bacteria. Here, we investigate the role of prophage phi456 with high spontaneous induction in the bacterial genome of Avian pathogenic Escherichia coli (APEC) DE456. The phage particles, phi456, that were released from DE456 were isolated, purified, and sequenced. Additionally, phage particles were no longer observed either during normal growth or induced by nalidixic acid in DE456Δphi456. This indicated that the released phage particles from DE456 were only phi456. We demonstrated that phi456 contributed to biofilm formation through spontaneous induction of the accompanying increase in the eDNA content. The survival ability of DE456Δphi456 was decreased in avian macrophage HD11 under oxidative stress and acidic conditions. This is likely due to a decrease in the transcription levels of three crucial genes-rpoS, katE, and oxyR-which are needed to help the bacteria adapt to and survive in adverse environments. It has been observed through animal experiments that the presence of phi456 in the DE456 genome enhances colonization ability in vivo. Additionally, the number of type I fimbriae in DE456Δphi456 was observed to be reduced under transmission electron microscopy when compared to the wild-type strain. The qRT-PCR results indicated that the expression levels of the subunit of I fimbriae (fimA) and its apical adhesin (fimH) were significantly lower in DE456Δphi456. Therefore, it can be concluded that phi456 plays a crucial role in helping bacterial hosts survive in unfavorable conditions and enhancing the colonization ability in DE456.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Animais , Escherichia coli/genética , Prófagos/genética , Galinhas/microbiologia , Adesinas Bacterianas/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária
8.
Foodborne Pathog Dis ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484311

RESUMO

The foodborne pathogens have a serious threat to human health, especially Listeria monocytogenes. NADPH oxidase (NOX) is involved in cellular respiration and the production of reactive oxygen species (ROS), acting as messengers to host cells during the infection. However, the role of nox in the process of L. monocytogenes infection is unclear. In this study, we examined the impact of nox in L. monocytogenes by gene deletion. The results of cell experiment showed that knocking out nox from L. monocytogenes strain EGDe resulted in a twofold increase invasion ability to Caco-2 cells compared with that of wild-type strain (WT), but did not affect adhesion ability. Animal infection assays also showed that bacterial loads in the liver and spleen of mice challenged with EGDe-Δnox were approximately two times higher compared with those challenged with the WT strain. On the one hand, quantitative real-time polymerase chain reaction revealed that deletion of nox leads to upregulation of genes related to the internalization of L. monocytogenes (inlA, inlB, and inlC). More importantly, the expression of listeriolysin-positive regulatory (prfA) gene increased by three times in vivo compared with that of WT. On the other hand, the deletion of nox resulted in a reduction of the upregulation of proinflammatory factors in EGDe-Δnox compared with the WT and complementary strains. Thus, our study revealed that nox affected the virulence of L. monocytogenes by upregulating the expression of virulence genes and regulating the production of ROS and inflammatory factors in vivo.

9.
Carbohydr Res ; 536: 109052, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38325067

RESUMO

The elucidation of the precise structure of fucan sulfate is essential for understanding the structure-activity relationship and promoting potential biomedical applications. In this work, the structure of a distinct fucan sulfate fraction V (PmFS in Ref 15 and FSV in Ref 16 → PFV) from Pattalus mollis was investigated using an oligosaccharide mapping approach. Six size-homogeneous fractions were purified from the mild acid hydrolyzed PFV and identified as fucitols, disaccharides and trisaccharides by 1D/2D NMR and MS analysis. Significantly, the sulfation pattern, glycosidic linkages, and sequences of all the oligosaccharides were unambiguously identified. The common 2-desulfation of the reducing end residue of the oligosaccharides was observed. Overall, the backbone of PFV was composed of L-Fuc2S (major) and L-Fuc3S (minor) linked by α1,4 glycosidic bonds. Importantly, the branches contain both monosaccharide and disaccharide linked to the backbone by α1,3 glycosidic linkages. Thus, the tentative structure of natural PFV was shown to be {-(R-α1,3)-L-Fuc2S-α1,4-(L-Fuc2S/3S-α1,4)x-}n, where R is L-Fuc(2S)4S-α1,3/4-L-Fuc4S(0S)- or L-Fuc(2S)4S-. Our results provide insight into the heterogeneous structure of the fucan sulfate found in sea cucumbers. Additionally, PFV and its fractions showed strong anticoagulant and anti-iXase activities, which may be related to the distinct structure of PFV.


Assuntos
Polissacarídeos , Pepinos-do-Mar , Animais , Polissacarídeos/química , Oligossacarídeos/química , Anticoagulantes/química , Pepinos-do-Mar/química
10.
Eur J Anaesthesiol ; 41(4): 305-313, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38298060

RESUMO

BACKGROUND: Tracheal injuries, vocal cord injuries, sore throat and hoarseness are common complications of double-lumen tube (DLT) intubation. OBJECTIVE: This study aimed to evaluate the effects of 'video double-lumen tubes' (VDLTs) on intubation complications in patients undergoing thoracic surgery. DESIGN: A randomised controlled study. SETTINGT: Xuzhou Cancer Hospital, Xuzhou, China, from January 2023 to June 2023. PATIENTS: One hundred eighty-two patients undergoing elective thoracic surgery with one-lung ventilation were randomised into two groups: 90 in the DLT group and 92 in the VDLT group. INTERVENTION: VDLT was selected for intubation in the VDLT group, and DLT was selected for intubation in the DLT group. A fibreoptic bronchoscope (FOB) was used to record tracheal and vocal cord injuries. MAIN OUTCOME MEASURES: The primary outcomes were the incidence of moderate-to-severe tracheal injury and the incidence of vocal cord injury. The secondary outcomes included the incidence and severity of postoperative 24 and 48 h sore throat and hoarseness. RESULTS: The incidence of moderate-to-severe tracheal injury was 32/90 (35.6%) in the DLT group, and 45/92 (48.9%) in the VDLT group ( P  = 0.077; relative risk 1.38, 95% CI, 0.97 to 1.95). The incidence of vocal cord injury was 31/90 (34.4%) and 34/92 (37%) in the DLT and VDLT groups, respectively ( P  = 0.449). The incidence of postoperative 24 h sore throat and hoarseness was significantly higher in the VDLT group than in the DLT group (for sore throat: P  = 0.032, relative risk 1.63, 95% CI, 1.03 to 2.57; for hoarseness: P  = 0.018, relative risk 1.48, 95% CI, 1.06 to 2.06). CONCLUSION: There was no statistically significant difference in the incidence of moderate-to-severe tracheal injury and vocal cord injury between DLTs and VDLTs. While improving the first-attempt success rate, intubation with VDLT increased the incidence of postoperative 24 h sore throat and hoarseness. TRIAL REGISTRATION: Chinese Clinical Trial Registry identifier: ChiCTR2300067348.


Assuntos
Faringite , Cirurgia Torácica , Procedimentos Cirúrgicos Torácicos , Humanos , Rouquidão/diagnóstico , Rouquidão/epidemiologia , Rouquidão/etiologia , Procedimentos Cirúrgicos Torácicos/efeitos adversos , Broncoscópios , Faringite/epidemiologia , Faringite/etiologia
11.
Small Methods ; : e2301411, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420894

RESUMO

Aqueous zinc (Zn) ions battery is promising for future large-scale applications of energy storage due to the abundant reserves, high capacity of metallic Zn. However, dendritic growth, severe side reactions have limited the development of Zn-metal anodes. A single skeleton structure or interface protection is difficult to simultaneously mitigate these issues. Here, a novel composite design based on the synergistic interaction between the hydrophobic host, the zincophilic interface is reported. On the one hand, the 3D substrate reduces the local current density, inhibits dendritic growth. On the other hand, the protective interface homogenizes the nucleation due to the formation of the ZnAu3 alloy layer. More importantly, the collaborative construction of the hydrophobicity, zincophilicity for the electrode alleviates the aggravated hydrogen evolution reaction (only 2.5 mmol h-1 ), simultaneously enables a low nucleation overpotential (31.7 mV) during cycling. Consequently, a high Coulombic efficiency of ≈98.25% after 300 cycles is harvested for the composite electrode. The pouch cells assembled by this anode, LiMn2 O4 cathode maintain 82 mAh g-1 capacity retention after 140 cycles. This research shows an innovative Zn-based structural design for aqueous Zn-ion batteries.

12.
PeerJ ; 12: e16632, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38259668

RESUMO

The subfamily Gobioninae is one of the most diverse fish groups within Cyprinidae. Their taxonomy and phylogenetic relationships are not completely resolved. In this study, the complete mitochondrial genomes (mitogenome) of four Gobioninae species (Microphysogobio elongatus, Microphysogobio chinssuensis, Gobio rivuloides and Rhinogobio nasutus) were sequenced and compared. The mitogenomes of four species ranges from 16603 bp to 16609 bp in length, consisting of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a control region. Most PCGs had significant codon usage bias. Except for the tRNASer (GCT), all the nucleotide substitutions of tRNA loops higher than the stems could fold into a stable secondary structure. The nucleotide compositions of Gobioninae mitogenome were biased toward A/T, and NAD4 was subjected to low purification selection and had a faster evolution rate among 13 PCGs. Bayesian inference and maximum likelihood phylogenetic analyses showed the consistent results. The four sequenced species clustered together with their congener species. However, more samples and mitogenome data are needed to untangle the phylogenetic relationships among genera Microphysogobio, Romanogobio, Hugobio, Biwia and Platysmacheilus.


Assuntos
Cyprinidae , Cipriniformes , Genoma Mitocondrial , Animais , Filogenia , Genoma Mitocondrial/genética , Teorema de Bayes , Cyprinidae/genética , Nucleotídeos , RNA de Transferência/genética
13.
Int J Gynaecol Obstet ; 164(2): 387-420, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37458179

RESUMO

Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease characterized by hyperandrogenism, ovulatory dysfunction, and ovarian polycystic changes, which combines with reproductive problems, metabolic disorders, and psychological disorders to exhibit a far-reaching impact on the physical and mental health of women. We reviewed previous research and discovered that psychiatric disorders are more common in PCOS patients and their children, potentially exacerbating the condition and creating a vicious loop. To understand the reasons, relevant articles were collected following the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines from PubMed, Web of Science, and Cochrane Library, through December 2022. Evidence suggested that PCOS-related clinical manifestations, hyperandrogenism, insulin resistance, obesity, gut dysbiosis, and other variables may increase the risk of psychiatric disorders in patients. In turn, psychiatric disorders may aggravate the pathologic process of PCOS and increase the difficulty of the treatment. We systematically reported the mechanisms underlying the psychiatric disorders-PCOS interactions, intending to provide potential ways to break the vicious cycle and lay the groundwork for future research. However, research on PCOS and psychiatric disorders were still in initial stages, which limited the scope of this review. More studies are needed to further verify our findings.


Assuntos
Hiperandrogenismo , Resistência à Insulina , Transtornos Mentais , Síndrome do Ovário Policístico , Criança , Humanos , Feminino , Síndrome do Ovário Policístico/metabolismo , Transtornos Mentais/epidemiologia , Transtornos Mentais/etiologia
14.
Phytomedicine ; 123: 155164, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952407

RESUMO

BACKGROUND: Recurrent pregnancy loss (RPL) is a tricky puzzle that disturbs female reproduction worldwide. According to previous research, Bushen Antai recipe (BAR), a classic Chinese herbal formula widely used in clinic for miscarriage, exhibited multifaceted benefits in improving embryo implantation and attenuating early pregnancy loss. Myeloid-derived suppressor cells (MDSCs), a set of immunoregulatory cells critical in inflammation balance, get growing attention for their indispensable role in successful pregnancy. PURPOSE: To investigate the therapeutic efficacy of BAR in abortion-prone mice and explore the potential mechanisms of BAR regarding MDSCs. METHODS: RPL mice (CBA/J females paired with DBA/2 males, BALB/c males were used as the control) were administered with BAR1 (5.7 g/kg), BAR2 (11.4 g/kg), progesterone (P4), or distilled water from embryo day (D) 0.5 until D10.5. The rate of embryo absorption on D10.5 and the health status of progeny were measured. The systemic inflammatory states and the placenta-uterus milieu were assessed by serum cytokine levels, placenta-uterus architecture, and related protein expression at the maternal-fetal interface. Flow cytometry analysis was carried out to measure the frequency of MDSCs. Furthermore, we established the MDSCs-depletion mouse model by using C57BL/6 females mated with BALB/c males via intraperitoneal injection of anti-Gr-1 antibody on D6.5, while irrelative LTF antibody was used as the control. Similarly, BAR1, BAR2, P4, or distilled water was separately applied. Embryo absorption rate, systemic inflammatory states, placenta-uterus milieu, and MDSCs frequency were evaluated as mentioned above. RESULTS: Significantly, embryo absorption rate was increased with disrupted placenta-uterus milieu and exorbitant proinflammatory cytokines in RPL mice, meanwhile, MDSCs number in the placenta-uterus unit were apparently reduced (⁎⁎⁎p < 0.001). BAR treatment markedly alleviated the poor conditions above and increased MDSCs number (####p < 0.0001). Flow cytometry analysis validated the efficacy of anti-Gr-1 antibody and the raised embryo absorption rate confirmed the essentiality of MDSCs in normal pregnancy (⁎⁎p < 0.01). Besides, the placenta-uterus milieu was destroyed, accompanied by the impaired expression of immune tolerance and angiogenesis related factors in the MDSCs-depletion mice. Even though, BAR treatment reversed the embryo resorption phenotype and optimized the serum cytokine milieu, mobilizing MDSCs and rejuvenating active intercellular communication. Thereby, BAR facilitated the expression of MDSCs-related functional molecules, promoting immune tolerance and vascular remodeling at the placenta-uterus unit. CONCLUSION: We unfurled the remarkable therapeutic ability of BAR in abortion-prone mice, and this was achieved by mobilizing MDSCs, thus favoring immune tolerance and angiogenesis at the maternal-fetal interface.


Assuntos
Aborto Espontâneo , Medicamentos de Ervas Chinesas , Células Supressoras Mieloides , Gravidez , Masculino , Humanos , Camundongos , Feminino , Animais , Aborto Espontâneo/metabolismo , Células Supressoras Mieloides/metabolismo , Angiogênese , Camundongos Endogâmicos DBA , Camundongos Endogâmicos CBA , Camundongos Endogâmicos C57BL , Tolerância Imunológica , Citocinas/metabolismo , Água , Camundongos Endogâmicos BALB C
15.
J Ethnopharmacol ; 323: 117654, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38158097

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jiawei Buzhong Yiqi Decoction (JWBZYQ), from records of FuqingzhuNvke, is a classical formula for treating obese women related infertility. JWBZYQ has been shown to be effective in treating polycystic ovary syndrome (PCOS) in both clinical studies and practical practice, with the pharmacological mechanism remaining unknown. AIM OF THE STUDY: To explore the potential therapeutic effects and mechanistic insights of JWBZYQ in PCOS. MATERIALS AND METHODS: An overweight PCOS rat model was established via testosterone propionate (TP) injection and 45% high-fat diet (HFD). Then they were categorized into five distinct groups: Control group, Model group, low-dose of JWBZYQ (JWBZYQ1) group, high-dose of JWBZYQ (JWBZYQ2) group, and metformin (Met) group. Body weight, estrous cycle, and sex hormone levels were observed. Hematoxylin-Eosin staining was employed to investigate the histological characteristics of the ovaries. To identify the pathways that changed significantly, transcriptome analysis was performed. The protein and mRNA levels of key molecules in ovarian zona pellucida (ZP) organization, transzonal projections (TZPs) assembly, steroid hormone receptors, and steroidogenesis were assessed using phalloidin staining, immunohistochemistry, Western blot, and polymerase chain reaction. RESULTS: RNA-seq analysis demonstrated that regulation of hormone secretion, cilium assembly, cell projection assembly, and ZP production may all have crucial impact on the etiology of PCOS and therapeutic effect of JWBZYQ. In particular, PCOS rats exhibited elevated expressions of ZP1-3, which can be reversed by JWBZYQ2 particularly. Simultaneously, TZPs assembly was totally disrupted in PCOS rats, evidenced by the phalloidin staining, upregulated calcium-/calmodulin-dependent protein kinase II beta (CaMKIIß), and deficient p-CaMKIIß, myosin X (MYO10), proline-rich tyrosine kinase 2 (PTK2), and Fascin. Nonetheless, JWBZYQ or metformin treatment revived the disturbance, repairing the oocyte-granulosa cell communication, regulating steroidogenesis in PCOS rats. In this way, JWBZYQ and metformin exerted remarkable effects in alleviating altered ovarian morphology and function in PCOS rats, with JWBZYQ2 revealing the best effect. CONCLUSIONS: JWBZYQ restored the altered ovarian morphology and function by regulating the oocyte-granulosa cell communication, which was related with ZP organization and TZPs assembly in the ovary.


Assuntos
Metformina , Síndrome do Ovário Policístico , Humanos , Ratos , Feminino , Animais , Síndrome do Ovário Policístico/metabolismo , Faloidina/uso terapêutico , Oócitos/metabolismo , Metformina/uso terapêutico , Comunicação Celular , Hormônios
16.
ACS Nano ; 18(1): 839-848, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108612

RESUMO

Zn-ion batteries (ZIBs) are developing rapidly due to their advantages of safety, moderate energy density, and abundant Zn-metal reserves. However, the dendritic growth and side reactions at the Zn-based anode and the dissolution of metallic elements at transition metal-based cathodes destabilize the electrode/electrolyte interface, which ultimately reduces the electrochemical performance of ZIBs. Herein, an aqueous/organic hybrid electrolyte that endows synergistic cathode/anode interfacial layers is proposed. On the anode, the ZnF2/Zn3(PO4)2-rich film induces the Zn nucleation, enabling a dendrite-free and corrosion-free electrode morphology. On the cathode, in contrast to Zn deposition anomalously on the cathode surface due to underpotential deposition during cycling in the unmodified electrolyte, the obtained interfacial film using the hybrid electrolyte inhibits the dissolution of metallic elements and avoids Zn deposition on the transition metal-based cathode. As a result, a pouch cell with a metallic Zn anode and a LiMn2O4 cathode (depth of discharge: 40%) based on the modified electrolyte maintains a capacity of 92 mAh g-1 after 235 cycles with a stable and clean cathode/anode interface. This research presents insight into the construction of a stable cathode/anode interface for long-cycling ZIBs.

17.
Front Physiol ; 14: 1254886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700763

RESUMO

Microplastics (MPs) and nanoplastics (NPs) are emergent pollutants, which have sparked widespread concern. They can infiltrate the body via ingestion, inhalation, and cutaneous contact. As such, there is a general worry that MPs/NPs may have an impact on human health in addition to the environmental issues they engender. The threat of MPs/NPs to the liver, gastrointestinal system, and inflammatory levels have been thoroughly documented in the previous research. With the detection of MPs/NPs in fetal compartment and the prevalence of infertility, an increasing number of studies have put an emphasis on their reproductive toxicity in female. Moreover, MPs/NPs have the potential to interact with other contaminants, thus enhancing or diminishing the combined toxicity. This review summarizes the deleterious effects of MPs/NPs and co-exposure with other pollutants on female throughout the reproduction period of various species, spanning from reproductive failure to cross-generational developmental disorders in progenies. Although these impacts may not be directly extrapolated to humans, they do provide a framework for evaluating the potential mechanisms underlying the reproductive toxicity of MPs/NPs.

18.
Talanta ; 265: 124910, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418961

RESUMO

Excessive levels of cyanide (CN-) and hypochlorite (ClO-) anions are the significant threats to the human health and the environment. Thus, great efforts have been to design and synthesize molecular sensors for the simple, instantaneous and efficient detecting environmentally and biologically important anions. Currently, developing a single molecular sensor for multi-analyte sensing is still a challenging task. In our present work, we developed a new molecular sensor (3TM) based on oligothiophene and Meldrum's acid units for detecting cyanide and hypochlorite anions in biological, environmental and food samples. The detecting ability of 3TM has been examined to various testing substances containing amino acids, reactive oxygen species, cations and anions, showing its high selectivity, excellent sensitivity, short response time (ClO-: 30 s, CN-: 100 s), and broad pH working range (4-10). The detection limits were calculated as 4.2 nM for ClO- in DMSO/H2O (1/8, v/v) solution and 6.5 nM for CN- in DMSO/H2O (1/99, v/v) solution. Sensor 3TM displayed sharp turn-on fluorescence increasement (555 nm, 435 nm) and sensitive fluorescence color changes caused by CN-/ClO-, which is ascribed to the nucleophilic addition and oxidation of ethylenic linkage by cyanide and hypochlorite, respectively. Moreover, sensor 3TM was applied for hypochlorite and cyanide detecting in real-world water, food samples and bio-imaging in live cells and zebrafish. To our knowledge, the developed 3TM sensor is the seventh single-molecular sensor for simultaneous and discriminative detecting hypochlorite and cyanide in food, biological and aqueous environments using two distinct sensing modes.


Assuntos
Cianetos , Peixe-Zebra , Animais , Humanos , Cianetos/química , Ácido Hipocloroso , Dimetil Sulfóxido , Corantes Fluorescentes/química , Ânions , Água/química
19.
Microorganisms ; 11(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37512897

RESUMO

Gestational diabetes mellitus (GDM) is an intractable issue that negatively impacts the quality of pregnancy. The incidence of GDM is on the rise, becoming a major health burden for both mothers and children. However, the specific etiology and pathophysiology of GDM remain unknown. Recently, the importance of gut microbiota and related metabolic molecules has gained prominence. Studies have indicated that women with GDM have significantly distinct gut microbiota and gut metabolites than healthy pregnant women. Given that the metabolic pathways of gut flora and related metabolites have a substantial impact on inflammation, insulin signaling, glucose, and lipid metabolism, and so on, gut microbiota or its metabolites, such as short-chain fatty acids, may play a significant role in both pathogenesis and progression of GDM. Whereas the role of intestinal flora during pregnancy is still in its infancy, this review aims to summarize the effects and mechanisms of gut microbiota and related metabolic molecules involved in GDM, thus providing potential intervention targets.

20.
J Ovarian Res ; 16(1): 149, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525285

RESUMO

Polycystic ovary syndrome (PCOS) is known as a prevalent but complicated gynecologic disease throughout the reproductive period. Typically, it is characterized by phenotypic manifestations of hyperandrogenism, polycystic ovary morphology, and persistent anovulation. For now, the therapeutic modality of PCOS is still a formidable challenge. Metabolic aberrations and immune challenge of chronic low-grade inflammatory state are significant in PCOS individuals. Recently, interleukin-22 (IL-22) has been shown to be therapeutically effective in immunological dysfunction and metabolic diseases, which suggests a role in the treatment of PCOS. In this review, we outline the potential mechanisms and limitations of IL-22 therapy in PCOS-related metabolic disorders including its regulation of insulin resistance, gut barrier, systemic inflammation, and hepatic steatosis to generate insights into developing novel strategies in clinical practice.


Assuntos
Anovulação , Hiperandrogenismo , Resistência à Insulina , Síndrome Metabólica , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Interleucinas , Síndrome Metabólica/complicações , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA