Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 856(Pt 2): 159136, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36191708

RESUMO

Soil salinization is one of the most severe environmental problems restricting biodiversity maintenance and ecosystem functioning in a coastal wetland. Recent studies have well documented how salinization affects soil microbial communities along vegetation succession of coastal wetlands. However, the salinity effect is rarely assessed in the context of plant intraspecific variation. Here, we analyzed the soil bacterial and fungal communities of Phragmites australis wetland using amplicon high-throughput sequencing at a fine scale (within 1000 m) in the Yellow River Delta. Our results revealed that microbial diversity is significantly correlated to soil salinity (assessed as electrical conductivity, EC) but not to soil nutrients (N and P content) or plant intraspecific traits (leaf length, shoot height, and neutral genetic variation). Specifically, the microbial diversity tended to decrease with increased EC, and the bacterial community was more sensitive to EC change than the fungal community. The dominant bacterial phyla were Proteobacteria, Actinobacteria, and Chloroflexi, and the dominant fungal phyla were Ascomycota, Basidiomycota, and Mortierellomycota. The relative abundance of Actinobacteria was significantly negatively correlated to EC, while Proteobacteria were positively correlated to EC. In high salinity (> 1 mS/cm), the role of the stochastic processes became more important in community assembly according to habitat niche breadth estimation, neutral community model, C-score metric, and normalized stochasticity ratio. Additional common garden and microcosm experiments provided evidence that the genotype effect of P. australis on soil microbiome might only occur between lineages from different regions but not from the same region like the Yellow River Delta. Our findings provide new insights into soil microbial community assembly processes with the intraspecific variation of host plants in the wetland ecosystem and offer a scientific reference for salinity mitigation and vegetation management of coastal wetlands under future global changes.


Assuntos
Microbiota , Áreas Alagadas , Solo , Rios , Salinidade , Plantas , Bactérias/genética , Genótipo , China
2.
Sci Total Environ ; 764: 144382, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33385658

RESUMO

Understanding the driving mechanisms of local genetic diversity is a fundamental challenge under the global environmental changes. Rivers provide an excellent study system to demonstrate the effects of hydrochory dispersal and habitat selection on genetic diversity of riparian flora. In this study, we focused on the genetic variation of common reed (Phragmites australis) in the Yellow River Delta, China. Firstly, samples were collected in the Yellow River Delta, its neighboring wetland and its upstream plain. The genetic variation of P. australis was investigated using two chloroplast DNA fragments and eleven nuclear microsatellites. The findings showed that the genetic variation of P. australis in the Yellow River Delta belonged to two distinct lineages (haplotype O and haplotype P), which were similar to the upstream, and to the neighboring populations, respectively. Moreover, the genetic results suggested the potential dispersal of haplotype O from upstream to downstream. Secondly, we surveyed the plant functional traits of common reed from the Yellow River Delta in the field and in the common garden. The results showed significant differences between riverine and non-riverine populations in plant functional traits (e.g. specific leaf area and leaf length), haplotype composition and genetic clustering, which implied natural selection by habitat conditions. Lastly, we re-analyzed the plant performance data from a salt manipulation experiment with different haplotypes, and the results supported that salinity is a significant selective stressor on P. australis lineages in the Yellow River Delta. Our study highlights the significance of hydrochory dispersal and habitat selection in the river effects on genetic diversity of riparian flora, and provides important information for biodiversity conservation and wetland management in the Yellow River Delta.


Assuntos
Ecossistema , Rios , China , Variação Genética , Poaceae , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA