Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
Microbiol Spectr ; : e0114624, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365096

RESUMO

Yersinia enterocolitica, a species within the genus Yersinia, thrives optimally at 22-25°C but can also grow at the mammalian core body temperature of 37°C. This dual temperature adaptability necessitates establishing both temperature conditions in research to examine the effects on various biological processes. In quantitative real-time PCR (qRT-PCR) assays, the selection of appropriate housekeeping genes is vital for data accuracy. Nevertheless, the lack of alternatives and information often leads to the default use of the 16S rRNA gene despite potential limitations. This investigation sourced 16 potential reference genes through a comprehensive review of the literature and transcriptome sequencing data analysis. We validated the expression stability of these genes via qRT-PCR across 12 Y. enterocolitica strains, representing the four prevalent serotypes O:3, O:5,27, O:8, and O:9, isolated from diarrheal patient stool samples. This approach aimed to minimize the impact of serotype heterogeneity. After acquiring Cq values, gene stability was evaluated using four established algorithms-ΔCq, geNorm, NormFinder, and BestKeeper-and subsequently synthesized into a consolidated ranking through the Robust Rank Aggregation (RRA) method. Our study suggests that the genes glnS, nuoB, glmS, gyrB, dnaK, and thrS maintain consistent expression across varying culture temperatures, supporting their candidacy as robust housekeeping genes. We advise against the exclusive use of 16S rRNA for this purpose. Should tradition prevail in its utilization, it must be employed with discernment, preferably alongside one or two of the housekeeping genes identified in this study as internal controls.IMPORTANCEIn our study, we focused on identifying stable reference genes for quantitative real-time PCR (qRT-PCR) experiments on Y. enterocolitica cultured at different temperatures (22°C and 37°C). After thoroughly evaluating 16 candidate genes, we identified six genes-glnS, nuoB, glmS, gyrB, dnaK, and thrS-as exhibiting stable expression across these temperature conditions, making them ideal reference genes for Y. enterocolitica studies. This discovery is crucial for ensuring the accuracy and reliability of qRT-PCR data, as the choice of appropriate reference genes is key to normalizing expression data and minimizing experimental variability. Importantly, our research extended beyond bioinformatics analysis by incorporating validation with clinical strains, bridging the gap between theoretical predictions and practical application. This approach not only underscores the robustness and reliability of our findings but also directly addresses the critical need for experimental validation in the field. By providing a set of validated, stably expressed reference genes, our work offers valuable guidance for designing experiments involving Y. enterocolitica, enhancing the reliability of research outcomes, and advancing our understanding of this significant pathogen.

2.
Gene ; 933: 148928, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39265844

RESUMO

In this study, we redefine the diagnostic landscape of diabetic ulcers (DUs), a major diabetes complication. Our research uncovers new biomarkers linked to immunogenic cell death (ICD) in DUs by utilizing RNA-sequencing data of Gene Expression Omnibus (GEO) analysis combined with a comprehensive database interrogation. Employing a random forest algorithm, we have developed a diagnostic model that demonstrates improved accuracy in distinguishing DUs from normal tissue, with satisfactory results from ROC analysis. Beyond mere diagnosis, our model categorizes DUs into novel molecular classifications, which may enhance our comprehension of their underlying pathophysiology. This study bridges the gap between molecular insights and clinical practice. It sets the stage for transformative strategies in DUs management, marking a significant step forward in personalized medicine for diabetic patients.

3.
Phytomedicine ; 134: 155951, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39182383

RESUMO

BACKGROUND: Psoriasis (PSO) poses a global health threat. The current research challenge in PSO is relapse. Liquiritin (LIQ), a major active compound from Glycyrrhiza inflata Batalin, has multiple pharmacological properties, including anti-inflammatory and anti-proliferative. Nonetheless, the precise mechanisms underlying LIQ's therapeutic actions in PSO and prevention abilities remain elusive. PURPOSE: The present study aimed to delve into the potential to treat and prevent PSO and the mechanism of LIQ. METHODS: The anti-inflammatory and anti-proliferative effects of LIQ were studied in vitro with the HaCaT cell line. Then, Transcriptional analysis and bioinformatic analysis were used to determine the internal associations of the target set. Subsequently, functional experiment, luciferase report assay, ChIP-PCR, and immunohistochemical validation of clinical samples were performed to investigate the mechanism of LIQ. Finally, the anti-psoriatic effects and prevention abilities of LIQ were verified in vivo with imiquimod (IMQ)-induced PSO-like mouse models. RESULTS: Here, we identified differentially expressed genes in LIQ-stimulated HaCaT cells and Retinol-Binding Protein 3 (RBP3) as the core target, whereas YY1 was a predicted upstream transcription factor of RBP3. The YY1/RBP3 axis was obviously altered after administering LIQ at optimal doses of 20 µM in vitro and 100 µg/ml in vivo. LIQ can significantly inhibit the progression of PSO in vivo. Notably, LIQ also prevented the relapse of psoriatic lesions induced by the second round of low-dose IMQ. Mechanistically, we observed that LIQ could increase the promotion of YY1 for RBP3 by enhancing the binding affinity between them. CONCLUSION: These findings revealed that the YY1/RBP3 axis is a potential psoriatic target, and LIQ is a promising and innovative therapeutic candidate for the treatment and prevention of PSO.


Assuntos
Flavanonas , Glucosídeos , Imiquimode , Psoríase , Animais , Feminino , Humanos , Masculino , Camundongos , Anti-Inflamatórios/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Flavanonas/farmacologia , Glucosídeos/farmacologia , Glycyrrhiza/química , Células HaCaT , Camundongos Endogâmicos BALB C , Psoríase/tratamento farmacológico , Fator de Transcrição YY1/metabolismo
4.
Food Res Int ; 193: 114826, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39160039

RESUMO

Herein, goji berries were pretreated with sodium carbonate (Na2CO3) and then dried via ultrasound-assisted air drying or microwave drying. Water migration and phenolic chemistry of goji berries were studied under drying. A three-dimensional ellipsoid water transport model, accounting for porosity and temperature fluctuations, was established to explore the intricacies of the drying mechanism. Generally, microwave drying promoted interior water transport compared to ultrasound drying. Among all the drying methods, microwave drying at 240 W (MW-240 W) exhibited the highest De (from 7.34 × 10-9 to 9.61 × 10-9 m2/s) and kc (6.78 × 10-4 m/s) values. The goji berries received a considerably high water content gradient between its surface and center within the first 2 s of all the drying treatments. Microwave drying diminished the water content gradient earlier than air drying and ultrasound-assisted air drying treatments. Furthermore, most correlations observed among phenolics, oxidase activity, and cell wall pectin did not align with the established theories, highlighting the highly nonlinear nature of phenolic chemistry during goji berry drying. This study provides a three-dimensional model to study the mass transfer mechanism of goji berries and analyzes the evolution of polyphenols during the drying process.


Assuntos
Dessecação , Frutas , Lycium , Micro-Ondas , Fenóis , Dessecação/métodos , Frutas/química , Fenóis/química , Lycium/química , Manipulação de Alimentos/métodos , Água/química , Porosidade , Ondas Ultrassônicas , Ultrassom
5.
J Agric Food Chem ; 72(33): 18537-18551, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39129180

RESUMO

Diabetes mellitus is a typical metabolic disease that has become a major threat to human health worldwide. Ginseng polypeptide (GP), a small molecule active substance isolated from ginseng, has shown positive hypoglycemic effects in preliminary studies. However, its mechanism in ameliorating multiorgan damage in db/db mice is unclear. In this study, we utilized network pharmacology, molecular docking, and animal experiments to explore the targets and biological mechanisms of GP to ameliorate multiorgan damage in T2DM. The results showed that GP improves T2DM by inhibiting inflammation and oxidative damage, thereby alleviating hyperglycemia, insulin resistance, and multiorgan damage in db/db mice. These effects are potentially mediated through the PI3K-Akt signaling pathway and the MAPK signaling pathway. This study establishes GP's efficacy in alleviating T2DM and provides a robust theoretical basis for the development of new drugs or functional foods for treating this disease.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemiantes , Simulação de Acoplamento Molecular , Farmacologia em Rede , Panax , Peptídeos , Animais , Panax/química , Camundongos , Hipoglicemiantes/química , Hipoglicemiantes/administração & dosagem , Masculino , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Extratos Vegetais/química , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Resistência à Insulina , Transdução de Sinais/efeitos dos fármacos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos
7.
Phys Chem Chem Phys ; 26(31): 20820-20827, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39044533

RESUMO

Magnetic refrigeration based on the magnetocaloric effect is gaining interest in orthogonal or hexagonal rare-earth manganite. However, a more comprehensive understanding of the underlying mechanism is still required. We grew a high-quality single crystal of Dy0.5Ho0.5MnO3 using the optical floating zone method, since the parent crystals DyMnO3 and HoMnO3 have orthogonal and hexagonal structures, respectively. The magnetic and magnetocaloric properties and refrigeration mechanisms are thoroughly investigated. Doping modifies the magnetism according to the results obtained from the investigation of magnetic and dielectric properties and heat capacity. The spin reorientation transition shifts towards low temperature in comparison to HoMnO3. Near the Néel temperature of rare-earth sublattices (5 K), the highest changes in negative magnetic entropy under 0-70 kOe are 18 J kg-1 K-1 and 13 J kg-1 K-1 along the a- and c-axes, respectively. The low-temperature metamagnetic phase transition caused by the alterations in the magnetic symmetry of Ho3+ contributes to an increased magnetocaloric effect in comparison to the parent crystals, rendering it a promising choice for magnetic refrigeration applications. Dy0.5Ho0.5MnO3 exhibits a clear magnetocrystalline anisotropy with enhanced refrigeration capacity and negative magnetic entropy change along the a-axis. The adiabatic temperature change of Dy0.5Ho0.5MnO3 is 8.5 K, larger than that of HoMnO3, rendering it a promising choice for low-temperature magnetic refrigeration applications.

8.
Adv Sci (Weinh) ; 11(32): e2403626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924679

RESUMO

Dislocation of anti-adhesion materials, non-specific tissue adhesion, and the induction of secondary fibrinolysis disorders are the main challenges faced by postoperative anti-adhesion materials. Herein, a self-leveling transient unilateral adhesive hydrogel is custom-designed to conquer these challenges with a theoretically calculated and dual-step tailored gellan gum (GG) as the sole agent. First, the maximum gelation temperature of GG is lowered from 42-25 °C through controlled perturbation of intra- and inter-molecular hydrogen bonds, which is achieved by employing the methacrylic anhydride as a "hydrogen bond's perturbator" to form methacrylate GG (MeGG). Second, the "self-leveling" injectability and wound shape adaptably are endowed by the formation of borate-diol complexed MeGG (BMeGG). Finally, the transient unilateral tissue-adhesive hydrogel (BMeGG-H) barrier is prepared through photo-controlled cross-linking of reactive alkenyl groups. This degradable hydrogel demonstrates favorable rheological properties, light-controlled unilateral adhesion properties, biocompatibility, anti-fibrin adhesion, and anti-cell adhesion properties in vitro. Comprehensive regulation of the fibrinolysis balance toward non-adhesion is conformed in a rat model after intra-abdominal surgery via anti-autoinflammatory response, intestinal wall integrity repair, and Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) balance adjustment. Notably, the 14th day anti-adhesion effective rate is 100%, indicating its significant potential in clinical applications for postoperative anti-adhesion.


Assuntos
Hidrogéis , Animais , Aderências Teciduais/prevenção & controle , Hidrogéis/química , Ratos , Modelos Animais de Doenças , Complicações Pós-Operatórias/prevenção & controle , Ratos Sprague-Dawley , Adesivos Teciduais , Luz , Materiais Biocompatíveis , Polissacarídeos Bacterianos
9.
J Pediatr (Rio J) ; 100(6): 614-621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797509

RESUMO

OBJECTIVE: To assess the outcome of patients with cancer-related sepsis requiring continuous renal replacement therapy (CRRT) in a single-center pediatric intensive care unit (PICU). METHOD: Children with sepsis who necessitate CRRT from January 2017 to December 2021 were enrolled. The patients with leukemia/lymphoma or solid tumors were defined as underlying cancer. Multivariate logistic regression analysis was performed to identify the death risk factors in patients with cancer-related sepsis. RESULTS: A total of 146 patients were qualified for inclusion. Forty-six (31.5%) patients with cancer-related sepsis and 100 (68.5%) non-cancer-related sepsis. The overall PICU mortality was 28.1% (41/146), and mortality was significantly higher in cancer-related sepsis patients compared with non-cancer patients (41.3% vs. 22.0%, p = 0.016). Need mechanical ventilation, p-SOFA, acute liver failure, higher fluid overload at CRRT initiation, hypoalbuminemia, and high inotropic support were associated with PICU mortality in cancer-related sepsis patients. Moreover, levels of IL-6, total bilirubin, creatinine, blood urea nitrogen, and international normalized ratio were significantly higher in non-survivors than survivors. In multivariate logistic regression analysis, pediatric sequential organ failure assessment (p-SOFA) score (OR:1.805 [95%CI: 1.047-3.113]) and serum albumin level (OR: 0.758 [95%CI: 0.581 -0.988]) were death risk factors in cancer-related sepsis receiving CRRT, and the AUC of combined index of p-SOFA and albumin was 0.852 (95% CI: 0.730-0.974). CONCLUSION: The overall PICU mortality is high in cancer-related sepsis necessitating CRRT. Higher p-SOFA and lower albumin were independent risk factors for PICU mortality.


Assuntos
Terapia de Substituição Renal Contínua , Unidades de Terapia Intensiva Pediátrica , Neoplasias , Sepse , Humanos , Estudos Retrospectivos , Sepse/mortalidade , Sepse/complicações , Sepse/terapia , Masculino , Feminino , Neoplasias/mortalidade , Neoplasias/complicações , Neoplasias/terapia , Criança , Pré-Escolar , Fatores de Risco , Lactente , Mortalidade Hospitalar , Adolescente
10.
Phys Chem Chem Phys ; 26(16): 12594-12599, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38596870

RESUMO

We report the spin reorientation transition (SRT) and the low field controllable continuous spin switching (SSW) of the Tm0.75Yb0.25FeO3 (TYFO) single crystal in this study. The SRT, characterized by the transition from Γ2(Fx, Cy, Gz)-Γ4(Gx, Ay, Fz), occurs within the temperature range of 20-27 K. Under an external magnetic field of 50 Oe, the SSW occurs along the c-axis at approximately 98 K due to the reversal of Tm3+ magnetic moment induced by the magnetic coupling change between Tm3+ and Fe3+, transitioning from a parallel to an antiparallel alignment. Notably, a continuous SSW is observed along the a-axis at low temperatures, which has not been previously reported in rare earth orthoferrites. This unique behavior can be easily manipulated by low magnetic fields within the temperature range of 2-20 K. Both the spin reorientation transition and spin switching phenomena in the TYFO single crystal arise from interactions between rare earth ions and iron ions and can be effectively regulated by applied low magnetic fields, making it a promising material for low-field spin devices.

11.
Biomater Sci ; 12(10): 2504-2520, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38529571

RESUMO

In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.


Assuntos
Materiais Biocompatíveis , Hidrogéis , Medicina Regenerativa , Engenharia Tecidual , Hidrogéis/química , Materiais Biocompatíveis/química , Humanos , Cicatrização/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Animais
12.
J Agric Food Chem ; 72(13): 7100-7120, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488514

RESUMO

Depression is a neuropsychiatric disease that significantly impacts the physical and mental health of >300 million people worldwide and places a major burden on society. Ginsenosides are the main active ingredient in ginseng and have been proven to have various pharmacological effects on the nervous system. Herein, we investigated the antidepressant effect of ginsenoside Rk3 and its underlying mechanism in a murine model of depression. Rk3 significantly improved depression-like behavior in mice, ameliorated the disturbance of the hypothalamus-pituitary-adrenal axis, and alleviated neuronal damage in the hippocampus and prefrontal cortex of mice. Additionally, Rk3 improved the abnormal metabolism of tryptophan in brain tissue by targeting tryptophan hydroxylase, thereby reducing neuronal apoptosis and synaptic structural damage in the mouse hippocampus and prefrontal cortex. Furthermore, Rk3 reshaped the composition of the gut microbiota of mice and regulated intestinal tryptophan metabolism, which alleviated intestinal barrier damage. Thus, this study provides valuable insights into the role of Rk3 in the tryptophan metabolic cycle along the brain-gut axis, suggesting that Rk3 may have the potential for treating depression.


Assuntos
Ginsenosídeos , Triptofano , Animais , Camundongos , Humanos , Ginsenosídeos/farmacologia , Triptofano Hidroxilase/genética , Eixo Encéfalo-Intestino , Depressão/tratamento farmacológico , Depressão/genética
13.
J Agric Food Chem ; 72(13): 7266-7278, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523338

RESUMO

Ginseng oligopeptides are naturally occurring small-molecule peptides extracted from ginseng that exhibit positive effects on health and longevity. However, the current industrial production of ginseng oligopeptides primarily relies on plant extraction and chemical synthesis. In this study, we proposed a novel genetic engineering approach to produce active ginseng peptides through multicopy tandem insertion (5 and 15 times). The recombinant ginseng peptides were successfully produced from engineered Bacillus subtilis with an increasing yield from 356.55 to 2900 mg/L as the repeats multiple. Additionally, an oxidative stress-induced aging model caused by H2O2 was established to evaluate whether the recombinant ginseng peptides, without enzymatic hydrolysis into individual peptides, also have positive effects on antiaging. The results demonstrated that all two kinds of recombinant ginseng peptides could also delay cellular aging through various mechanisms, such as inhibiting cell cycle arrest, suppressing the expression of pro-inflammatory factors, and enhancing cellular antioxidant capacity.


Assuntos
Bacillus subtilis , Panax , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Panax/química , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Oligopeptídeos/genética , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo
15.
Phytomedicine ; 124: 155287, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176268

RESUMO

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is a prevalent chronic liver disease that lacks an FDA-approved treatment medicine. Despite the known antitumor and hypoglycemic properties of Ginsenoside Rg5, its effects and underlying mechanisms in the context of NASH remain largely unexplored. PURPOSE: This study aims to investigate the effect of Rg5 on NASH mice induced by a high-fat diet and CCl4. STUDY DESIGN: In vivo experiments, a mouse NASH model was established by a HFHC diet plus intraperitoneal injection of low-dose CCl4. In vitro experiments, a cellular steatosis model was established using free fatty acids (FFA) induced HepG2 cells. In addition, a fibrogenesis model was established using HSC-LX2 cells. METHODS: The effects of Ginsenoside Rg5 on lipid accumulation and oxidative damage were analyzed by ELISA kit, H&E staining, Oil Red O staining, flow cytometry and Western blot. The effects of Ginsenoside Rg5 on liver fibrosis were analyzed by Masson staining, Sirus Red staining, immunohistochemistry and Western blot. The effect of Ginsenoside Rg5 on Notch1 signaling pathway in liver was studied by protein Oil Red staining, protein immunoblotting and immunofluorescence. RESULTS: In terms of lipid accumulation, Rg5 has the ability to regulate key proteins related to lipogenesis, thereby inhibiting hepatic lipid accumulation and oxidative stress. Additionally, Rg5 can reduce the occurrence of hepatocyte apoptosis by regulating the p53 protein. Moreover, after Rg5 intervention, the presence of fibrotic proteins (α-SMA, Collagen 1, TGF-ß) in the liver is significantly suppressed, thus inhibiting liver fibrosis. Lastly, Rg5 leads to a decrease in the expression levels of Notch1 and its ligand Jagged-1 in the liver. CONCLUSION: In summary, the regulatory effects of Rg5 on the Notch1 signaling pathway play a crucial role in modulating hepatic lipid metabolism and preventing hepatocyte apoptosis, thereby impeding the progression of NASH. These findings highlight the potential of Rg5 as a promising natural product for interventions targeting NASH.


Assuntos
Ginsenosídeos , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado , Cirrose Hepática/metabolismo , Transdução de Sinais , Células Hep G2 , Dieta Hiperlipídica/efeitos adversos , Apoptose , Lipídeos , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
16.
J Clin Invest ; 134(5)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206764

RESUMO

Nonalcoholic fatty liver disease (NAFLD) encompasses a disease continuum from simple steatosis to nonalcoholic steatohepatitis (NASH). However, there are currently no approved pharmacotherapies for NAFLD, although several drugs are in advanced stages of clinical development. Because of the complex pathophysiology and heterogeneity of NAFLD, the identification of potential therapeutic targets is clinically important. Here, we demonstrated that tripartite motif 56 (TRIM56) protein abundance was markedly downregulated in the livers of individuals with NAFLD and of mice fed a high-fat diet. Hepatocyte-specific ablation of TRIM56 exacerbated the progression of NAFLD, while hepatic TRIM56 overexpression suppressed it. Integrative analyses of interactome and transcriptome profiling revealed a pivotal role of TRIM56 in lipid metabolism and identified the lipogenesis factor fatty acid synthase (FASN) as a direct binding partner of TRIM56. TRIM56 directly interacted with FASN and triggered its K48-linked ubiquitination-dependent degradation. Finally, using artificial intelligence-based virtual screening, we discovered an orally bioavailable small-molecule inhibitor of FASN (named FASstatin) that potentiates TRIM56-mediated FASN ubiquitination. Therapeutic administration of FASstatin improved NAFLD and NASH pathologies in mice with an optimal safety, tolerability, and pharmacokinetics profile. Our findings provide proof of concept that targeting the TRIM56/FASN axis in hepatocytes may offer potential therapeutic avenues to treat NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Inteligência Artificial , Dieta Hiperlipídica/efeitos adversos , Ácido Graxo Sintases/genética , Hepatopatia Gordurosa não Alcoólica/genética
17.
IEEE Trans Pattern Anal Mach Intell ; 46(4): 2430-2449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37938938

RESUMO

Human motion generation aims to generate natural human pose sequences and shows immense potential for real-world applications. Substantial progress has been made recently in motion data collection technologies and generation methods, laying the foundation for increasing interest in human motion generation. Most research within this field focuses on generating human motions based on conditional signals, such as text, audio, and scene contexts. While significant advancements have been made in recent years, the task continues to pose challenges due to the intricate nature of human motion and its implicit relationship with conditional signals. In this survey, we present a comprehensive literature review of human motion generation, which, to the best of our knowledge, is the first of its kind in this field. We begin by introducing the background of human motion and generative models, followed by an examination of representative methods for three mainstream sub-tasks: text-conditioned, audio-conditioned, and scene-conditioned human motion generation. Additionally, we provide an overview of common datasets and evaluation metrics. Lastly, we discuss open problems and outline potential future research directions. We hope that this survey could provide the community with a comprehensive glimpse of this rapidly evolving field and inspire novel ideas that address the outstanding challenges.


Assuntos
Algoritmos , Benchmarking , Humanos , Movimento (Física)
18.
J Cell Mol Med ; 28(3): e18086, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38152044

RESUMO

Cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) are the second most common cancers in women aged 20-39. While HPV screening can help with early detection of cervical cancer, many patients are already in the medium to late stages when they are identified. As a result, searching for novel biomarkers to predict CESC prognosis and propose molecular treatment targets is critical. TGFA is a polypeptide growth factor with a high affinity for the epidermal growth factor receptor. Several studies have shown that TGFA can improve cancer growth and progression, but data on its impact on the occurrence and advancement of CESC is limited. In this study, we used clinical data analysis and bioinformatics techniques to explore the relationship between TGFA and CESC. The results showed that TGFA was highly expressed in cervical cancer tissues and cells. TGFA knockdown can inhibit the proliferation, migration and invasion of cervical cancer cells. In addition, after TGFA knockout, the expression of IL family and MMP family proteins in CESC cell lines was significantly reduced. In conclusion, TGFA plays an important role in the occurrence and development of cervical cancer. Therefore, TGFA may become a new target for cervical cancer treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Humanos , Feminino , Linhagem Celular , Biologia Computacional , Pescoço , Fator de Crescimento Transformador alfa
19.
Int Immunopharmacol ; 125(Pt A): 111033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38149569

RESUMO

BACKGROUND: Jueyin granules (JYG) is effective against psoriasis, but its utility components are not clear. Rutin is the main monomer of JYG, its therapeutic effect and mechanism on psoriasis need to be further clarified. PURPOSE: To explore the potential mechanisms of rutin on psoriasis through network pharmacology and experiments. METHODS: In vitro, cell viability was determined using the CCK8 assay, and inflammatory factors were identified using RT-qPCR. The hub genes and kernel pathways of action were identified by modular pharmacology analysis. In vivo, a BALB/c mice model of psoriasis was induced by Imiquimod (IMQ). The therapeutic effect and action pathway were detected through Western Blotting, RT-qPCR, histopathologic and immunohistochemical analysis. RESULTS: Rutin inhibited cell proliferation and expression of TNF-α and IL-6 in HaCaT cells. The hub genes include APP, INS, and TNF, while the kernel pathways contain the AGE-RAGE signaling pathway. In IMQ-induced psoriasis-like mice, rutin ameliorated skin lesions and inhibited cell proliferation. Rutin could attenuate inflammation by downregulating the AGE-RAGE signaling pathway. CONCLUSION: This study suggests that rutin can reduce IMQ-induced psoriasis like skin inflammation in mice, and regulation of AGE-RAGE signaling pathway may be one of its potential anti-inflammatory mechanisms. Rutin has a promising therapeutic use for the treatment of psoriasis.


Assuntos
Psoríase , Rutina , Animais , Camundongos , Rutina/farmacologia , Rutina/uso terapêutico , Farmacologia em Rede , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Psoríase/patologia , Inflamação/induzido quimicamente , Transdução de Sinais , Imiquimode/farmacologia , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Pele/patologia , Queratinócitos
20.
Int Immunopharmacol ; 124(Pt A): 110861, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37713783

RESUMO

Diabetic ulcers (DUs) are a common complication of diabetes with high morbidity, poor prognosis, and a high socio-economic burden. The main pathological manifestations of DUs are chronic inflammation, impaired re-epithelialization, and impaired angiogenesis. During the inflammatory phase, neutrophils are one of the main DU cell types and act by releasing neutrophil extracellular traps (NETs), leading to poor healing in DUs. This review summarizes the role of neutrophils in the pathology and treatment of DUs, with a view to potential novel therapies and therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA