RESUMO
In order to address the shortcomings of the traditional bidirectional RRT* algorithm, such as its high degree of randomness, low search efficiency, and the many inflection points in the planned path, we institute improvements in the following directions. Firstly, to address the problem of the high degree of randomness in the process of random tree expansion, the expansion direction of the random tree growing at the starting point is constrained by the improved artificial potential field method; thus, the random tree grows towards the target point. Secondly, the random tree sampling point grown at the target point is biased to the random number sampling point grown at the starting point. Finally, the path planned by the improved bidirectional RRT* algorithm is optimized by extracting key points. Simulation experiments show that compared with the traditional A*, the traditional RRT, and the traditional bidirectional RRT*, the improved bidirectional RRT* algorithm has a shorter path length, higher path-planning efficiency, and fewer inflection points. The optimized path is segmented using the dynamic window method according to the key points. The path planned by the fusion algorithm in a complex environment is smoother and allows for excellent avoidance of temporary obstacles.
Assuntos
Robótica , Algoritmos , Simulação por Computador , Registros , Projetos de PesquisaRESUMO
Alfalfa (Medicago sativa L.), a kind of high-quality perennial legume forage, is widely distributed in the northern regions of China. In recent years, low temperatures have frequently occurred and limited alfalfa productivity and survival in early spring and late fall. However, the underlying molecular mechanisms of alfalfa response to cold tolerance are not well-documented. In this study, dormancy and non-dormancy alfalfa standard varieties were characterized under low-temperature stress. Our analysis revealed that plant height of the dormancy genotype was strongly inhibited by low temperature; flavonoids content, and higher expression of flavonoids biosynthesis genes (chalcone synthase, leucoanthocyanidin dioxygenase, and flavonoid 3'-monooxygenase) may play essential roles in response to low-temperature stress in dormancy genotype alfalfa. Further analyses revealed that receptor-like kinase family genes (such as cysteine-rich RLK10, lectin protein kinase, and S-locus glycoprotein like kinase), RNA and protein synthesis genes (RNA polymerases, ribosomal protein, and protein phosphatase 2C family protein), and proteasome degradation pathway genes (such as F-box family protein, RING/U-box superfamily protein, and zinc finger family protein) also highly upregulated and contributed to cold tolerance phenotype in dormancy genotype alfalfa. This will provide new insights into future studies for cold tolerance in alfalfa and offer new target genes for further functional characterization and genetic improvement of alfalfa.
RESUMO
The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), 'Triple Crown' and 'Qinghai 444', with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for 'Qinghai 444'. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in 'Triple Crown' and 'Qinghai 444' bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of 'Qinghai 444' bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with 'Triple Crown'. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.
Assuntos
Avena/metabolismo , Flores/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Clorofila/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/fisiologia , Tilacoides/metabolismoRESUMO
BACKGROUND: Alfalfa (Medicago sativa L.) is a perennial legume extensively planted throughout the world as a high nutritive value livestock forage. Flowering time is an important agronomic trait that contributes to the production of alfalfa hay and seeds. However, the underlying molecular mechanisms of flowering time regulation in alfalfa are not well understood. RESULTS: In this study, an early-flowering alfalfa genotype 80 and a late-flowering alfalfa genotype 195 were characterized for the flowering phenotype. Our analysis revealed that the lower jasmonate (JA) content in new leaves and the downregulation of JA biosynthetic genes (i.e. lipoxygenase, the 12-oxophytodienoate reductase-like protein, and salicylic acid carboxyl methyltransferase) may play essential roles in the early-flowering phenotype of genotype 80. Further research indicated that genes encode pathogenesis-related proteins [e.g. leucine rich repeat (LRR) family proteins, receptor-like proteins, and toll-interleukin-like receptor (TIR)-nucleotide-binding site (NBS)-LRR class proteins] and members of the signaling receptor kinase family [LRR proteins, kinases domain of unknown function 26 (DUF26) and wheat leucine-rich repeat receptor-like kinase10 (LRK10)-like kinases] are related to early flowering in alfalfa. Additionally, those involved in secondary metabolism (2-oxoglutarate/Fe (II)-dependent dioxygenases and UDP-glycosyltransferase) and the proteasome degradation pathway [really interesting new gene (RING)/U-box superfamily proteins and F-box family proteins] are also related to early flowering in alfalfa. CONCLUSIONS: Integrated phenotypical, physiological, and transcriptomic analyses demonstrate that hormone biosynthesis and signaling pathways, pathogenesis-related genes, signaling receptor kinase family genes, secondary metabolism genes, and proteasome degradation pathway genes are responsible for the early flowering phenotype in alfalfa. This will provide new insights into future studies of flowering time in alfalfa and inform genetic improvement strategies for optimizing this important trait.
Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Oxilipinas/metabolismo , FenótipoRESUMO
Deterioration during seed storage generally causes seed vigour declining. However, the mechanism of deterioration occurred still not clear. Seeds and embryos of oat (Avena sativa L.) were selected to analyze the relation of physiological and metabolic reactions with DEGs by using RNA-seq. Oat seed vigour declined during seeds aged 0 day (CK), 16 days (CD16) and 32 days (CD32). The changes of MDA and H2O2 contents, antioxidant enzymes activities of APX, DHAR, MDHAR and GR related with AsA-GSH cycle in embryos illustrated that seed vigour declined to the minimum at CD32. Transcriptomic analysis showed a total of 11335 and 8274 DEGs were identified at CD16 and CD32 compared with CK respectively, of which 4070 were overlapped. When seed vigour declined to the moderate level (CD16), the accumulation of H2O2 caused by the inhibition of complex I in ETC could be alleviated with AsA-GSH cycle. RNA-seq and qRT-PCR results both showed alternative oxidase in alternate respiratory pathway was upregulated which would maintain seed respiration. However, as seed vigour was at the lowest level (CD32), blocked ETC caused by down-regulation of complex III, including Ubiquinol-cytochrome C reductase complex 14kD subunit and Ubiquinol-cytochrome C reductase, UQCRX/QCR9 like, were more seriously and H2O2 scavenging was limited by the inactive AsA-GSH cycle. It could be suggested that the function of AsA-GSH would play a key role for regulating the physiological responses of ETC in embryos during seed ageing. These results would provide an insight into embryo for the transcriptomic information during oat seed ageing.
Assuntos
Avena/embriologia , Glutationa/metabolismo , Sementes/metabolismo , Transcriptoma , Antioxidantes/metabolismo , Ácido Ascórbico , Avena/metabolismo , Peróxido de HidrogênioRESUMO
BACKGROUND AND AIMS: Rhizomes are key organs for the establishment of perennial grass stands and adaptation to environmental stress. However, mechanisms regulating rhizome initiation and elongation under drought stress and during post-drought recovery remain unclear. The objective of this study is to investigate molecular factors and metabolic processes involved in drought effects and post-drought recovery in rhizome growth in perennial grass species by comparative transcriptomic and proteomic profiling. METHODS: Tall fescue (Festuca arundinacea) (B-type rhizome genotype, 'BR') plants were exposed to drought stress and re-watering in growth chambers. The number and length of rhizomes were measured following drought stress and re-watering. Hormone and sugar contents were analysed, and transcriptomic and proteomic analyses were performed to identify metabolic factors, genes and proteins associated with rhizome development. KEY RESULTS: Rhizome initiation and elongation were inhibited by drought stress, and were associated with increases in the contents of abscisic acid (ABA) and soluble sugars, but declines in the contents of indoleacetic acid (IAA), zeatin riboside (ZR) and gibberellin (GA4). Genes involved in multiple metabolic processes and stress defence systems related to rhizome initiation exhibited different responses to drought stress, including ABA signalling, energy metabolism and stress protection. Drought-inhibition of rhizome elongation could be mainly associated with the alteration of GA4 and antioxidants contents, energy metabolism and stress response proteins. Upon re-watering, new rhizomes were regenerated from rhizome nodes previously exposed to drought stress, which was accompanied by the decline in ABA content and increases in IAA, ZR and GA4, as well as genes and proteins for auxin, lipids, lignin and nitrogen metabolism. CONCLUSIONS: Drought-inhibition of rhizome initiation and elongation in tall fescue was mainly associated with adjustments in hormone metabolism, carbohydrate metabolism and stress-defence systems. Rhizome regeneration in response to re-watering involved reactivation of hormone and lipid metabolism, secondary cell-wall development, and nitrogen remobilization and cycling.
Assuntos
Secas , Poaceae/genética , Ácido Abscísico , Regulação da Expressão Gênica de Plantas , Proteômica , RizomaRESUMO
Cyclophilins (CYPs), a class of proteins with a conserved peptidyl-prolyl cis-trans isomerase domain, are widely involved in the regulation of plant growth and development, as well as in the response to abiotic stresses including cold. In our previous study, we identified an Arabidopsis gain-of-function mutant ROC1S58F with enhanced cold-tolerance and enhanced expression of jasmonic acid (JA) and oxidative stress responsive genes. Here, we show the underlying molecular mechanisms for the improved cold tolerance observed in the ROC1S58F mutant. Compared to the WT, the ROC1S58F mutant showed an increased survival rates and a reduced level of electrolyte leakage and endogenous JA content under the freezing treatment. Correspondingly, the JA biosynthesis genes (AtAOC1 and AtOPR3) and signaling genes (AtJAZ5, AtJAZ10 and AtMYB15) are down-regulated in the ROC1S58F mutant compared with the WT. Moreover, both the transcripts and activities of the ROS-scavenging enzymes (SOD/POD/MDHAR) increased in cold-stressed ROC1S58F mutant, which might mitigate the ROS-induced oxidative stress and contribute to the mutant freezing tolerance. Taken together, our findings indicate that AtROC1S58F confers Arabidopsis freezing tolerance by modulating JA signaling and antioxidant metabolism jointly. This research thus provides a molecular mechanism for AtROC1S58F-conferred freezing resistance in Arabidopsis and offers guidance for crop breeding towards an improved cold tolerance.
RESUMO
Cyclophilins (CYPs) belonging to the immunophilin family are present in all organisms and widely distributed in various cells associated with the activity of peptidyl-prolyl cis/trans isomerase. Plant CYPs are members of a multi-gene family and are involved in a series of biological processes. However, little is known about their structure, evolution, developmental expression and functional analysis in Medicago truncatula. In this study, a total of 33 CYP genes were identified and found to be unevenly distributed on eight chromosomes. Among them, 21 are single-domain and 12 are multi-domain proteins, and most were predicted to be localized in the cytosol, nucleus or chloroplast. Phylogenetic and gene structure analysis revealed seven segmental gene pairs, indicating that segmental duplication probably made a large contribution to the expansion of MtCYP gene family. Furthermore, gene expression analysis revealed that about 10 MtCYP genes (were) highly expressed involved in vegetative and reproduction tissues in M. truncatula, and MsCYP20-3B was mainly upregulated in stems, leaves and flower buds in alfalfa (Medicago sativa). Overexpression of MsCYP20-3B was shown to regulate axillary shoot development associated with higher jasmonic acid and abscisic acid contents in M. truncatula. Our study suggests the importance of the CYP genes family in development, reproduction and stress responses, and provides a reference for future studies and application of CYP genes for alfalfa genetic improvement.
Assuntos
Ciclofilinas/genética , Medicago truncatula/genética , Cloroplastos/metabolismo , Cromossomos de Plantas/genética , Ciclofilinas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genoma de Planta/genética , Medicago truncatula/metabolismo , Família Multigênica/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genéticaRESUMO
Mitochondria are the source of reactive oxygen species (ROS) in plant cells and play a central role in the mitochondrial electron transport chain (ETC) and tricarboxylic acid cycle (TCA) cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L.) exposed to exogenous nitric oxide (NO) treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT). Seedling growth was also inhibited. Some enzymes, including catalase (CAT), glutathione reductase (GR), dehydroascorbate reductase (DHAR), and monodehydroascorbate reductase (MDHAR), maintained a lower level in the ascorbate-glutathione (AsA-GSH) scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase), and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the application of 0.05 mM NO in aged oat seeds improved seed vigor by enhancing the mitochondrial TCA cycle and activating alternative pathways for improvement.
Assuntos
Mitocôndrias/metabolismo , Óxido Nítrico/farmacologia , Sementes/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sementes/efeitos dos fármacosRESUMO
BACKGROUND AND AIMS: Rhizomes are underground stems with meristematic tissues capable of generating shoots and roots. However, mechanisms controlling rhizome formation and growth are yet to be completely understood. The objectives of this study were to investigate whether rhizome development could be regulated by cytokinins (CKs) and gibberellic acids (GAs), and determine underlying mechanisms of regulation of rhizome formation and growth of tall fescue (Festuca arundinacea) by a CK or GA through proteomic and transcript analysis. METHODS: A rhizomatous genotype of tall fescue ('BR') plants were treated with 6-benzylaminopurine (BAP, a synthetic cytokinin) or GA3 in hydroponic culture in growth chambers. Furthermore, comparative proteomic analysis of two-dimensional electrophoresis and mass spectrometry were performed to investigate proteins and associated metabolic pathways imparting increased rhizome number by BAP and rhizome elongation by GA3 KEY RESULTS: BAP stimulated rhizome formation while GA3 promoted rhizome elongation. Proteomic analysis identified 76 differentially expressed proteins (DEPs) due to BAP treatment and 37 DEPs due to GA3 treatment. Cytokinin-related genes and cell division-related genes were upregulated in the rhizome node by BAP and gibberellin-related and cell growth-related genes in the rhizome by GA3 CONCLUSIONS: Most of the BAP- or GA-responsive DEPs were involved in respiratory metabolism and amino acid metabolism. Transcription analysis demonstrated that genes involved in hormone metabolism, signalling pathways, cell division and cell-wall loosening were upregulated by BAP or GA3 The CK and GA promoted rhizome formation and growth, respectively, by activating metabolic pathways that supply energy and amino acids to support cell division and expansion during rhizome initiation and elongation in tall fescue.
Assuntos
Compostos de Benzil/farmacologia , Festuca/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Purinas/farmacologia , Aminoácidos/metabolismo , Citocininas/metabolismo , Festuca/crescimento & desenvolvimento , Festuca/fisiologia , Genótipo , Giberelinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Proteômica , Rizoma/efeitos dos fármacos , Rizoma/crescimento & desenvolvimento , Rizoma/fisiologiaRESUMO
Rapid and extensive rhizome development is a desirable trait for perennial grass growth and adaptation to environmental stresses. The objective of this study was to determine proteomic changes and associated metabolic pathways of gibberellin (GA) -regulation of rhizome elongation in two perennial grass species differing in rhizome development. Plants of a short-rhizome bunch-type tall fescue (TF; Festuca arundinacea; 'BR') and an extensive rhizomatous Kentucky bluegrass (KB; Poa pratensis; 'Baron') were treated with 10 µM GA3 in hydroponic culture in growth chambers. The average rhizome length in KB was significantly longer than that in TF regardless of GA3 treatment, and increased significantly with GA3 treatment, to a greater extent than that in TF. Comparative proteomic analysis using two-dimensional electrophoresis and mass spectrometry was performed to further investigate proteins and associated metabolic pathways imparting increased rhizome elongation by GA. A total of 37 and 38 differentially expressed proteins in response to GA3 treatment were identified in TF and KB plants, respectively, which were mainly involved in photosynthesis, energy and amino acid metabolism, protein synthesis, defense and cell development processes. Accelerated rhizome elongation in KB by GA could be mainly associated with the increased abundance of proteins involved in energy metabolism (glyceraldehyde-3-phosphate dehydrogenase, fructose-bisphosphate aldolase, and ATP synthase), amino acid metabolism (S-adenosylmethionine and adenosylhomocysteinase), protein synthesis (HSP90, elongation factor Tu and eukaryotic translation initiation factor 5A), cell-wall development (cell dividion cycle protein, alpha tubulin-2A and actin), and signal transduction (calreticulin). These proteins could be used as candidate proteins for further analysis of molecular mechanisms controlling rhizome growth.
RESUMO
Chlorophyll (Chl) degradation occurs naturally during leaf maturation and senescence, and can be induced by stresses, both processes involving the regulation of plant hormones. The objective of this study was to determine the functional roles and hormonal regulation of a gene encoding pheophytin pheophorbide hydrolyase (PPH) that catabolizes Chl degradation during leaf senescence in perennial grass species. A PPH gene, LpPPH, was cloned from perennial ryegrass (Lolium perenne L.). LpPPH was localized in the chloroplast. Overexpressing LpPPH accelerated Chl degradation in wild tobacco, and rescued the stay-green phenotype of the Arabidopsis pph null mutant. The expression level of LpPPH was positively related to the extent of leaf senescence. Exogenous application of abscisic acid (ABA) and ethephon (an ethylene-releasing agent) accelerated the decline in Chl content in leaves of perennial ryegrass, whereas cytokinin (CK) and aminoethoxyvinylglycine (AVG; an ethylene biosynthesis inhibitor) treatments suppressed leaf senescence, corresponding to the up- or down-regulation of LpPPH expression. The promoters of five orthologous PPH genes were predicted to share conserved cis-elements potentially recognized by transcription factors in the ABA and CK pathways. Taken together, the results suggested that LpPPH-mediated Chl breakdown could be regulated positively by ABA and ethylene, and negatively by CK, and LpPPH could be a direct downstream target gene of transcription factors in the ABA and CK signaling pathways.
Assuntos
Genes de Plantas , Lolium/enzimologia , Lolium/genética , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/enzimologia , Folhas de Planta/crescimento & desenvolvimento , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Cloroplastos/efeitos dos fármacos , Cloroplastos/enzimologia , Clonagem Molecular , Sequência Conservada , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Glicina/análogos & derivados , Glicina/farmacologia , Lolium/efeitos dos fármacos , Dados de Sequência Molecular , Mutação/genética , Compostos Organofosforados/farmacologia , Fenótipo , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Transcrição Gênica/efeitos dos fármacosRESUMO
In the absence of pathogen infection, plant effector-triggered immune (ETI) receptors are maintained in a preactivation state by intermolecular interactions with other host proteins. Pathogen effector-induced alterations activate the receptor. In Arabidopsis, the ETI receptor RPM1 is activated via bacterial effector AvrB-induced phosphorylation of the RPM1-interacting protein RIN4 at Threonine 166. We find that RIN4 also interacts with the prolyl-peptidyl isomerase (PPIase) ROC1, which is reduced upon RIN4 Thr166 phosphorylation. ROC1 suppresses RPM1 immunity in a PPIase-dependent manner. Consistent with this, RIN4 Pro149 undergoes cis/trans isomerization in the presence of ROC1. While the RIN4(P149V) mutation abolishes RPM1 resistance, the deletion of Pro149 leads to RPM1 activation in the absence of RIN4 phosphorylation. These results support a model in which RPM1 directly senses conformational changes in RIN4 surrounding Pro149 that is controlled by ROC1. RIN4 Thr166 phosphorylation indirectly regulates RPM1 resistance by modulating the ROC1-mediated RIN4 isomerization.
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas de Transporte/metabolismo , Ciclofilinas/metabolismo , Prolina/metabolismo , Arabidopsis/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Isomerismo , Ligação ProteicaRESUMO
Plant architecture is an important agronomic trait and is useful for identification of plant species. The molecular basis of plant architecture, however, is largely unknown. Forward genetics was used to identify an Arabidopsis mutant with altered plant architecture. Using genetic and molecular approaches, we analyzed the roles of a mutated cyclophilin in the control of plant architecture. The Arabidopsis mutant roc1 has reduced stem elongation and increased shoot branching, and the mutant phenotypes are strongly affected by temperature and photoperiod. Map-based cloning and transgenic experiments demonstrated that the roc1 mutant phenotypes are caused by a gain-of-function mutation in a cyclophilin gene, ROC1. Besides, application of the plant hormone gibberellic acid (GA) further suppresses stem elongation in the mutant. GA treatment enhances the accumulation of mutated but not of wildtype (WT) ROC1 proteins. The roc1 mutation does not seem to interfere with GA biosynthesis or signaling. GA signaling, however, antagonizes the effect of the roc1 mutation on stem elongation. The altered plant architecture may result from the activation of an R gene by the roc1 protein. We also present a working model for the interaction between the roc1 mutation and GA signaling in regulating stem elongation.
Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ciclofilinas/genética , Mutação , Sequência de Aminoácidos , Arabidopsis/anatomia & histologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , Ciclofilinas/metabolismo , Ciclofilinas/fisiologia , Giberelinas/metabolismo , Giberelinas/farmacologia , Dados de Sequência Molecular , Fenótipo , Fotoperíodo , Plantas Geneticamente Modificadas/anatomia & histologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Alinhamento de Sequência , Transdução de Sinais , TemperaturaRESUMO
The genetic basis of heterosis for grain yield and its components was investigated at the single- and two-locus levels using molecular markers with an immortalized F(2) (IF(2)) population, which was developed by pair crosses among recombinant inbred lines (RILs) derived from the elite maize hybrid Yuyu22. Mid-parent heterosis of each cross in the IF(2) population was used to map heterotic quantitative trait loci. A total of 13 heterotic loci (HL) were detected. These included three HL for grain yield, seven for ear length, one for ear row number and two for 100-kernel weight. A total of 143 digenic interactions contributing to mid-parent heterosis were detected at the two-locus level involving all three types of interactions (additive x additive = AA, additive x dominance = AD or DA, dominance x dominance = DD). There were 25 digenic interactions for grain yield, 36 for ear length, 31 for ear row number and 51 for 100-kernel weight. Altogether, dominance effects of HL at the single-locus level as well as AA interactions played an important role in the genetic basis of heterosis for grain yield and its components in Yuyu22.
Assuntos
Vigor Híbrido/genética , Hibridização Genética , Zea mays/genética , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Locos de Características Quantitativas , Zea mays/crescimento & desenvolvimentoRESUMO
The QTL mapping results were compared with the genotypically selected and random samples of the same size on the base of a RIL population. The results demonstrated that there were no obvious differences in the trait distribution and marker segregation distortion between the genotypically selected and random samples with the same population size. However, a significant increase in QTL detection power, sensitivity, specificity, and QTL resolution in the genotypically selected samples were observed. Moreover, the highly significant effect was detected in small size of genotypically selected samples. In QTL mapping, phenotyping is a more sensitive limiting factor than genotyping so that the selection of samples could be an attractive strategy for increasing genome-wide QTL mapping resolution. The efficient selection of samples should be more helpful for QTL maker assistant selection, fine mapping, and QTL cloning.