Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Plant Biotechnol J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600703

RESUMO

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.

2.
Animal ; 18(4): 101116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484632

RESUMO

The Yongdeng Qishan sheep (QS) is a sheep population found locally in China. To gain in-depth knowledge of its population characteristics, three control groups were chosen, comprising the Lanzhou fat-tailed sheep (LFT), TAN sheep (TAN), and Minxian black fur sheep (MBF), inhabiting the nearby environments. This study genotyped a total of 120 individuals from four sheep populations: QS, LFT, TAN, and MBF. Using Specific-Locus Amplified Fragment Sequencing, we conducted genetic diversity, population structure, and selective sweep analysis, and constructed the fingerprint of each population. In total, there were 782 535 single nucleotide polymorphism (SNP) variations identified, with most being situated within regions that are intergenic or intronic. The genetic diversity analysis revealed that the QS population exhibited lower genetic diversity compared to the other three populations. Consistent results were obtained from the principal component, phylogenetic tree, and population structure analysis, indicating significant genetic differences between QS and the other three populations. However, a certain degree of differentiation was observed within the QS population. The linkage disequilibrium (LD) patterns among the four populations showed clear distinctions, with the QS group demonstrating the most rapid LD decline. Kinship analysis supported the findings of population structure, dividing the 90 QS individuals into two subgroups consisting of 23 and 67 individuals. Selective sweep analysis identified a range of genes associated with reproduction, immunity, and adaptation to high-altitude hypoxia. These genes hold potential as candidate genes for marker-assisted selection breeding. Additionally, a total of 86 523 runs of homozygosity (ROHs) were detected, showing non-uniform distribution across chromosomes, with chromosome 1 having the highest coverage percentage and chromosome 26 the lowest. In the high-frequency ROH islands, 79 candidate genes were associated with biological processes such as reproduction and fat digestion and absorption. Furthermore, a DNA fingerprint was constructed for the four populations using 349 highly polymorphic SNPs. In summary, our research delves into the genetic diversity and population structure of QS population. The construction of DNA fingerprint profiles for each population can provide valuable references for the identification of sheep breeds both domestically and internationally.


Assuntos
Impressões Digitais de DNA , Genoma , Humanos , Ovinos/genética , Animais , Filogenia , Impressões Digitais de DNA/veterinária , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
3.
Toxicology ; 501: 153709, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38123012

RESUMO

Exposure to air pollutants has been associated with various adverse health outcomes, including chronic obstructive pulmonary disease (COPD). However, the precise underlying mechanism by which air pollution impacts COPD through remains insufficiently understood. To elucidated the molecular mechanism by which air pollutant exposure contributes to alterations in the gut microbiome and metabolism in AECOPD patients, we employed metagenomics and untargeted metabolomics to analyse the gut microbial, faecal, and serum metabolites. The correlations among air pollutants, gut microbes, serum metabolites, and blood biochemical markers were assessed using generalised additive mixed models and Spearman correlation analysis. The findings revealed that for every 10 µg/m3 increase in PM2.5 concentration, the α-diversity of the gut flora decreased by 2.16% (95% CI: 1.80%-2.53%). We found seven microorganisms that were significantly associated with air pollutants, of which Enterococcus faecium, Bacteroides fragilis, Ruthenibacterium lactatiformans, and Subdoligranulum sp.4_3_54A2FAA were primarily associated with glycolysis. We identified 13 serum metabolites and 17 faecal metabolites significantly linked to air pollutants. Seven of these metabolites, which were strongly associated with air pollutants and blood biochemical indices, were found in both serum and faecal samples. Some of these metabolites, such as 2,5-furandicarboxylic acid, C-8C1P and melatonin, were closely associated with disturbances in lipid and fatty acid metabolism in AECOPD patients. These findings underscore the impact of air pollutants on overall metabolism based on influencing gut microbes and metabolites in AECOPD patients. Moreover, these altered biomarkers establish the biologic connection between air pollutant exposure and AECOPD outcomes.The identification of pertinent biomarkers provides valuable insights for the development of precision COPD prevention strategies.


Assuntos
Poluentes Atmosféricos , Doença Pulmonar Obstrutiva Crônica , Humanos , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Estudos de Coortes , Multiômica , Biomarcadores/análise , Material Particulado/toxicidade
4.
World J Surg Oncol ; 21(1): 354, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978382

RESUMO

PURPOSE: The purpose of this study was to investigate the use of thromboelastography (TEG) in patients with colorectal cancer and to examine whether the TEG parameters can be used as potential markers for disease screening and prediction of disease severity. METHODS: One-hundred fifteen healthy controls (HC), 43 patients with benign adenoma (BA), and 387 patients with colorectal cancers (CRC) were included in the study. TEG parameters (reaction time, R; clot kinetics, K; alpha angle, α-angle; maximum amplitude, MA), conventional laboratory parameters, and clinical information were collected and analyzed among the HC, BA, and CRC groups. Receiver operating characteristics (ROC) were used for differential analysis. The correlation between TEG parameters and pathological information of CRC (differentiation degree, vaso-nerve infiltration, TNM stage) was analyzed. The differences in TEG parameters at different stages of disease and pre-/post operation were compared. RESULTS: Shorter K and higher α-angle/MA were found in patients with CRC compared with HC and BA (P < 0.001). TEG parameters demonstrated moderate diagnostic value (distinguish CRC from HC + BA: K-AUC = 0.693, α-angle-AUC = 0.687, MA-AUC = 0.700) in CRC but did not outperform traditional laboratory parameters. TEG hypercoagulability was closely associated with tumor markers (carcinoma embryonic antigen and carbohydrate antigen 19-9) and pathological information (differentiation degree, vaso-nerve infiltration, and TNM stage) (P < 0.05). Trend analysis showed that K decreased, but α-angle/MA increased gradually as the tumor progressed (P < 0.001). K- and α-angle showed slightly better sensitivity in predicting advanced tumors compared to traditional laboratory parameters. In CRC patients, 3-6 months after tumor resection, K [from 1.8 (1.5, 2.3) to 1.9 (1.6, 2.6)], α-angle [from 65.3 (59.0, 68.6) to 63.7 (56.6, 68.5)], and MA [from 61.0 (58.2, 66.0) to 58.9 (55.8, 61.3)] exhibited modest improvements compared to their preoperative values (P < 0.05). CONCLUSION: TEG parameters possess moderate diagnostic value in CRC diagnosis and predicting advanced tumors, and they are closely linked to surgical interventions. Although TEG parameters do not significantly outperform traditional laboratory parameters, they still hold promise as potential alternative indicators in CRC patients.


Assuntos
Neoplasias Colorretais , Tromboelastografia , Humanos , Curva ROC , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/cirurgia
5.
Diagnostics (Basel) ; 13(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37835869

RESUMO

BACKGROUND: Correctly distinguishing mass-forming chronic pancreatitis (MFCP) from pancreatic cancer (PC) is of clinical significance to determine optimal therapy and improve the prognosis of patients. According to research, inflammation status in PC is different from that in MFCP. Mean platelet volume/platelet ratio (MPR) is a platelet-related inflammation index which has been proven to be valuable in the diagnosis and prognosis of various malignant cancers due to the change in mean platelet volume and platelet count under abnormal inflammatory conditions caused by tumors. Thus, we conducted this study to investigate the clinical value of MPR in distinguishing MFCP from PC. METHODS: We retrospectively analyzed the data of 422 patients who were suspected to have PC during imaging examination at our department from January 2012 to December 2021. Included patients were divided into the PC (n = 383) and MFCP groups (n = 39), according to their pathological diagnosis. Clinical data including MPR were compared within these two groups and the diagnostic value was explored using logistic regression. The ROC curve between MPR and PC occurrence was drawn and an optimal cut-off value was obtained. Propensity score matching was applied to match MFCP patients with PC patients according to their age and carbohydrate antigen 19-9 (CA19-9). Differences in MPR between groups were compared to verify our findings. RESULTS: The area under the ROC curve between MPR and PC occurrence was 0.728 (95%CI: 0.652-0.805) and the optimal cut-off value was 0.045 with a 69.2% sensitivity and 68.0% accuracy. For all the included patients, MPRs in the MFCP and PC groups were 0.04 (0.04, 0.06) and 0.06 (0.04, 0.07), respectively (p = 0.005). In patients with matching propensity scores, MPRs in the MFCP and PC groups were 0.04 (0.03, 0.06) and 0.06 (0.05, 0.08), respectively (p = 0.005). Multiple logistic regression in all included patients and matched patients confirmed MPR and CA19-9 as independent risk markers in distinguishing PC. Combining CA19-9 with MPR can increase the sensitivity and accuracy in diagnosing PC to 93.2% and 89.5%, respectively. CONCLUSION: MPR in PC patients is significantly higher than that in MFCP patients and may be adopted as a potential indicator to distinguish MFCP and PC. Its differential diagnosis capacity can be improved if combined with CA19-9.

6.
Environ Pollut ; 336: 122425, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37604393

RESUMO

The antibiotic pollution emerged in different environments has raised a great concern. Adsorption is an effective method to solve the problem. However, conventional adsorbents are not always efficient for antibiotic removal with interferences. Therefore, in this study, molecularly imprinted polymer (EMIP) with selective adsorption ability was prepared to remove a typical antibiotic-erythromycin (ERY) at environmentally relevant concentration. The specific surface area of EMIP was 265.62 m2/g with large pore volume, small pore size and hydrophobic surface. The adsorption capacity of EMIP was increased from 211.08 to 4015.51 µg/g when the concentration of ERY was increased from 5.00 to 100.00 µg/L. The isothermal adsorption process was fitted well with the Langmuir model. The adsorption kinetic could be well described by the pseudo-second-order model. With co-existing of interferences, the imprinting factor for ERY was 2.57, which demonstrated EMIP had good adsorption selectivity. After five consecutive adsorption-desorption experiments, the adsorption capacity of EMIP was still over 80%. The results of molecular dynamic simulation showed the adsorption energy between ERY and EMIP was high, which was favorable for ERY adsorption removal. Hopefully, the results of this study could provide new insights for trace antibiotic removal by molecular imprinting polymers in different aqueous environments.

7.
Nature ; 621(7979): 506-510, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648858

RESUMO

Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5-7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8-10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene-water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O-H bond protruding at the graphene-water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.

8.
Int J Biol Macromol ; 246: 125694, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414309

RESUMO

Adaptation to drought and salt stresses is a fundamental part of plant cell physiology and is of great significance for crop production under environmental stress. Heat shock proteins (HSPs) are molecular chaperones that play a crucial role in folding, assembling, translocating, and degrading proteins. However, their underlying mechanisms and functions in stress tolerance remain elusive. Here, we identified the HSP TaHSP17.4 in wheat by analyzing the heat stress-induced transcriptome. Further analysis showed that TaHSP17.4 was significantly induced under drought, salt, and heat stress treatments. Intriguingly, yeast-two-hybrid analysis showed that TaHSP17.4 interacts with the HSP70/HSP90 organizing protein (HOP) TaHOP, which plays a significant role in linking HSP70 and HSP90. We found that TaHSP17.4- and TaHOP-overexpressing plants have a higher proline content and a lower malondialdehyde content than wild-type plants under stress conditions and display strong tolerance to drought, salt, and heat stress. Additionally, qRT-PCR analysis showed that stress-responsive genes relevant to reactive oxygen species scavenging and abscisic acid signaling pathways were significantly induced in TaHSP17.4- and TaHOP-overexpressing plants under stress conditions. Together, our findings provide insight into HSP functions in wheat and two novel candidate genes for improvement of wheat varieties.


Assuntos
Proteínas de Plantas , Triticum , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/metabolismo , Cloreto de Sódio/farmacologia , Regulação da Expressão Gênica de Plantas , Secas
9.
Bio Protoc ; 13(11): e4691, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37323638

RESUMO

Agrobacterium rhizogenes is a soil bacteria with extensive infectivity, which can infect almost all dicotyledonous plants and a few monocotyledonous plants to induce root nodules. This is caused by the root-inducing plasmid, which contains genes responsible for the autonomous growth of root nodules and crown gall base synthesis. Structurally, it is similar to the tumor-inducing plasmid in that it mainly contains the Vir region, the T-DNA region, and the functional region of crown gall base synthesis. Its T-DNA is integrated into the nuclear genome of the plant with the assistance of Vir genes, causing hairy root disease in the host plant and the formation of hairy roots. The roots produced by Agrobacterium rhizogenes-infested plants are characterized by a fast growth rate, high degree of differentiation, physiological, biochemical, and genetic stability, and ease of manipulation and control. In particular, the hairy root system is an efficient and rapid research tool for plants that have no affinity for transformation by Agrobacterium rhizogenes and low transformation efficiency. The establishment of germinating root culture system for the production of secondary metabolites in the original plants through the genetic transformation of natural plants mediated by root-inducing plasmid in Agrobacterium rhizogenes has become a new technology combining plant genetic engineering and cell engineering. It has been widely used in a variety of plants for different molecular purposes, such as pathological analysis, gene function verification, and secondary metabolite research. Chimeric plants obtained by induction of Agrobacterium rhizogenes that can be expressed instantaneously and contemporarily are more rapidly obtained, compared to tissue culture and stably inheritable transgenic strains. In general, transgenic plants can be obtained in approximately one month.

10.
Diagnostics (Basel) ; 13(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37189504

RESUMO

Cholesterol correlates with occurrence and progression of pancreatic cancer and has predictive value for postoperative prognosis in various cancers. Our study intended to reveal the relationship between perioperative serum total cholesterol (TC) level and postoperative prognosis of pancreatic cancer. We retrospectively analyzed the data of pancreatic cancer patients who underwent surgical treatment at our hospital from January 2015 to December 2021. ROC curves between serum TC level at each time point and 1-year survival rate were drawn, from which study object and optimal cutoff value was determined. Patients were divided into low and high-TC groups, and perioperative data and prognosis were compared. Risk factors for poor postoperative prognosis were identified by univariate and multivariate analysis. Overall survival rates at postoperative 1, 2 and 3 years in the low and high-TC groups were 52.9%, 29.4%, and 15.6% and 80.4%, 47.2%, and 33.8% (p = 0.005), respectively. Multivariate analysis confirmed tumor differentiation degree (RR = 2.054, 95% CI: 1.396-3.025), pTNM stage (RR = 1.595, 95% CI: 1.020-2.494), lymph node metastasis (RR = 1.693, 95% CI: 1.127-2.544), and postoperative 4-week serum TC level (RR = 0.663, 95% CI: 0.466-0.944) as independent risk factors for prognosis of pancreatic cancer. We conclude that postoperative 4-week serum TC level has certain predictive value for long-term postoperative prognosis of pancreatic cancer.

11.
Life (Basel) ; 13(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36983919

RESUMO

Cordyceps militaris is a famous traditional edible and medicinal fungus in Asia, and its fruiting body has rich medicinal value. The molecular mechanism of fruiting body development is still not well understood in C. militaris. In this study, phylogenetically analysis and protein domains prediction of the 14 putative chitinases were performed. The transcription level and enzyme activity of chitinase were significant increased during fruiting body development of C. militaris. Then, two chitinase genes (Chi1 and Chi4) were selected to construct gene silencing strain by RNA interference. When Chi1 and Chi4 genes were knockdown, the differentiation of the primordium was blocked, and the number of fruiting body was significantly decreased approximately by 50% compared to wild-type (WT) strain. The length of the single mature fruiting body was shortened by 27% and 38% in Chi1- and Chi4-silenced strains, respectively. In addition, the chitin content and cell wall thickness were significantly increased in Chi1- and Chi4-silenced strains. These results provide new insights into the biological functions of chitinase in fruiting body development of C. militaris.

12.
J Environ Manage ; 336: 117661, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36913857

RESUMO

Extracellular polymeric substances (EPS) of activated sludge are a mixture of high molecular weight polymers secreted by microorganisms, which have the double structure of tightly-bound EPS (TB-EPS) in inner layer and loosely-bound EPS (LB-EPS) in outer layer. The characteristic of LB- and TB-EPS were different, which would affect their adsorption of antibiotics. However, the adsorption process of antibiotics on LB- and TB-EPS was still unclear yet. Therefore, in this work, the roles of LB-EPS and TB-EPS in adsorption of a typical antibiotic-trimethoprim (TMP) at environmentally relevant concentration (25.0 µg/L) were investigated. The results showed the content of TB-EPS was higher than that of LB-EPS, which was 17.08 and 10.36 mg/g VSS, respectively. The adsorption capacity of raw, LB-EPS extracted and both LB- and TB-EPS extracted activated sludges for TMP were 5.31, 4.65 and 9.51 µg/g VSS, respectively, which indicated LB-EPS had positive effect on TMP removal, while TB-EPS had negative effect. The adsorption process can be well described by a pseudo-second-order kinetic model (R2 > 0.980). The ratio of different functional groups was calculated and the CO and C-O bond might be responsible for the adsorption capacity difference between LB- and TB-EPS. The fluorescence quenching results indicated that tryptophan protein-like substances in LB-EPS provided more binding sites (n = 0.36) than that of tryptophan amino acid in TB-EPS (n = 0.1). Furthermore, the extend DLVO results also demonstrated that LB-EPS promoted the adsorption of TMP, while TB-EPS inhibited the process. We hope the results of this study were helpful for understanding the fate of antibiotics in wastewater treatment systems.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Esgotos/química , Matriz Extracelular de Substâncias Poliméricas/química , Trimetoprima/análise , Adsorção , Triptofano/análise , Antibacterianos/análise
13.
Bioresour Technol ; 373: 128705, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746212

RESUMO

Cordycepin is the key pharmacologically active compound of Cordyceps militaris, and various fermentation strategies have been developed to increase cordycepin production. This study aimed to investigate the effect of rotenone on cordycepin biosynthesis in submerged fermentation of C. militaris, and also to explore its possible induction mechanisms via multi-omics analysis. Adding 5 mg/L rotenone significantly increased the cordycepin production by 316.09 %, along with mycelial growth inhibition and cell wall destruction. Moreover, transcriptomic analysis and metabolomic analysis revealed the accumulation of cordycepin was promoted by alterations in energy metabolism and amino acid metabolism pathways. Finally, the integration analysis of the two omics confirmed rotenone altered the nucleotide metabolism pathway toward adenosine and up-regulated the cordycepin synthesis genes (cns1-3) to convert adenosine to cordycepin. This work reports, for the first time, rotenone could act as an effective inducer of cordycepin synthesis.


Assuntos
Cordyceps , Fermentação , Cordyceps/metabolismo , Rotenona/farmacologia , Rotenona/metabolismo , Multiômica , Desoxiadenosinas/metabolismo , Adenosina/metabolismo
14.
Plant Physiol Biochem ; 195: 310-321, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657296

RESUMO

R2R3-MYB transcription factors play an important role in the synthesis of phenylpropanoid-derived compounds, which in turn provide salt tolerance in plant. In this study, we found that the expression of foxtail millet R2R3-MYB factor SiMYB16 can be induced by salt and drought. SiMYB16 is localized in the nucleus and acts as a transcriptional activator. Phylogenetic analysis indicates that SiMYB16 belongs to the R2R3-MYB transcription factor family subgroup 24. Transgenic rice expressing SiMYB16 (OX16) had a higher survival rate, lower malondialdehyde content, and heavier fresh weight compared with type (WT) under salt stress conditions. The transgenic plants also had a higher germination rate in salt treatment conditions and higher yield in the field compared with wild-type plants. Transcriptome analysis revealed that the up-regulated differential expression genes in the transgenic rice were mainly involved in phenylpropanoid biosynthesis, fatty acid elongation, phenylalanine metabolism, and flavonoid biosynthesis pathways. Quantitative real-time PCR analysis also showed that the genes encoding the major enzymes in the lignin and suberin biosynthesis pathways had higher expression level in SiMYB16 transgenic plants. Correspondingly, the content of flavonoid and lignin, and the activity of fatty acid synthase increased in SiMYB16 transgenic rice compared with wild-type plants under salt stress treatment. These results indicate that SiMYB16 gene can enhance plant salt tolerance by regulating the biosynthesis of lignin and suberin.


Assuntos
Oryza , Setaria (Planta) , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tolerância ao Sal/genética , Setaria (Planta)/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Flavonoides/metabolismo , Secas
15.
Int J Biol Macromol ; 230: 123255, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36639088

RESUMO

Despite their essential and multiple roles in biological processes, the molecular mechanism of Dof transcription factors (TFs) for responding to abiotic stresses is rarely reported in plants. We identified a soybean Dof gene GmDof41 which was involved in the responses to drought, salt, and exogenous ABA stresses. Overexpression of GmDof41 in soybean transgenic hairy roots attenuated H2O2 accumulation and regulated proline homeostasis, resulting in the drought and salt tolerance. Yeast one-hybrid and electrophoretic mobility shift assay (EMSA) illustrated that GmDof41 was regulated by the DREB1-type protein GmDREB1B;1 that could improve drought and salt tolerance in plants. Further studies illustrated GmDof41 can directly bind to the promoter of GmDREB2A which encodes a DREB2-type protein and affects abiotic stress tolerance in plants. Collectively, our results suggested that GmDof41 positively regulated drought and salt tolerance by correlating with GmDREB1B;1 and GmDREB2A. This study provides an important basis for further exploring the abiotic stress-tolerance mechanism of Dof TFs in soybean.


Assuntos
Glycine max , Tolerância ao Sal , Glycine max/genética , Glycine max/metabolismo , Tolerância ao Sal/genética , Secas , Peróxido de Hidrogênio/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Front Microbiol ; 13: 971433, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160236

RESUMO

Aphanizomenon flos-aquae (A. flos-aquae) blooms are serious environmental and ecological problems. Extracellular polymeric substances (EPSs) are among the most important indicators for the growth and aggregation of A. flos-aquae. In this study, the secretion of the EPS matrix under temperature rise (7-37°C) was investigated and the role of this matrix in A. flos-aquae aggregation was quantified. First, when the temperature increased, the aggregation ratio increased from 41.85 to 91.04%. Meanwhile, we found that when soluble EPSs (S-EPSs), loosely bound EPSs (LB-EPSs), and tightly bound EPSs (TB-EPSs) were removed successively, the aggregation ratio decreased from 69.29 to 67.45%, 61.47%, and 41.14%, respectively. Second, the content of polysaccharides in the EPS matrix was higher than the content of proteins under temperature change. The polysaccharide in TB-EPSs was closely related to the aggregation ability of A. flos-aquae (P < 0.01). Third, PARAFAC analysis detected two humic-like substances and one protein-like substance in EPSs. Furthermore, Fourier transforms infrared spectroscopy (FTIR) showed that with increasing temperature, the polysaccharide-related functional groups increased, and the absolute value of the zeta potential decreased. In conclusion, these results indicated that a large number of polysaccharides in TB-EPSs were secreted under increasing temperature, and the polysaccharide-related functional groups increased correspondingly, which reduced the electrostatic repulsion between algal cells, leading to the destruction of the stability of the dispersion system, and then the occurrence of aggregation. This helps us to understand the process of filamentous cyanobacterial aggregation in lakes.

19.
Food Funct ; 13(17): 9032-9048, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35943028

RESUMO

Oxidative stress causes chronic inflammation, and mediates various diseases. The discovery of antioxidants from natural sources is important to research. Here we identified a novel antioxidant peptide (GLP4) from Ganoderma lingzhi mycelium and investigated its antioxidant type and potential protective mechanisms. Through free radical scavenging assay, active site shielding validation, superoxide dismutase (SOD) activity assay, and lipid peroxidation assay, we demonstrated that GLP4 was a novel protective agent with both direct and indirect antioxidant activities. GLP4 could directly enter human umbilical vein endothelial cells (HUVECs) as an exogenous substance. Meanwhile, GLP4 promoted the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and activated the Nrf2/antioxidant response element (ARE) signaling pathway, exhibiting antioxidant and anti-apoptotic cytoprotective effects on hydrogen peroxide (H2O2)-induced HUVECs. Pull-down experiments of GLP4 target proteins, bioinformatics analysis and molecular docking further revealed that GLP4 mediated Nrf2 activation through binding to phosphoglycerate mutase 5 (PGAM5). The results suggested that GLP4 is a novel peptide with dual antioxidant activity and has promising potential as a protective agent in preventing oxidative stress-related diseases.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ganoderma , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Simulação de Acoplamento Molecular , Micélio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
20.
Arch Microbiol ; 204(8): 453, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35786781

RESUMO

Soil microorganisms play a vital role in biogeochemical processes and nutrient turnover in agricultural ecosystems. However, the information on how the structure and co-occurrence patterns of microbial communities response to the change of planting methods is still limited. In this study, a total of 34 soil samples were collected from 17 different fields of 2 planting types (wheat and orchards) along the Taige Canal in Yangtze River Delta. The structure of bacterial and fungal communities in soil were determined by 16S rRNA gene and ITS gene, respectively. The dominated bacteria were Proteobacteria, Acidobacteriota, Actinobacteriota, Chloroflexi, Bacteroidota, and Firmicutes. The relative abundances of Actinobacteriota and Firmicutes were higher in the orchards, while Chloroflexi and Nitrospirota were more abundant in wheat fields. Ascomycota, Mortierellomycota, and Basidiomycota were the predominant fungus in both soil types. Diversity of bacterial and fungal communities were greater in the wheat fields than in orchards. Statistical analyses showed that pH was the main factor shaping the community structure, and parameters of water content (WC), total organic carbon (TOC) and total nitrogen (TN) had great influences on community structure. Moreover, high co-occurrence patterns of bacterial and fungal were confirmed in both wheat fields and orchards. Network analyses showed that both wheat fields and orchards occurred modular structure, including nodes of Acidobacteriota, Chloroflexi, Gemmatimonadota, Nitrospirota and Ascomycota. In summary, our work showed the co-occurrence network and the convergence/divergence of microbial community structure in wheat fields and orchards, giving a comprehensive understanding of the microbe-microbe interaction during planting methods' changes.


Assuntos
Microbiota , Triticum , Acidobacteria , Bactérias/genética , Firmicutes , Frutas , Fungos/genética , RNA Ribossômico 16S/genética , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA