RESUMO
The mechanisms by which low light accelerates starch macromolecules degradation by auxin and gibberellin (GA) in geophytes during sprouting remain largely unknown. This study investigated these mechanisms in saffron, grown under low light (50 µmol m-2 s-1) and optimal light (200 µmol m-2 s-1) during the sprouting phase. Low light reduced starch concentration in corms by 34.0 % and increased significantly sucrose levels in corms, leaves, and leaf sheaths by 19.2 %, 9.8 %, and 134.5 %, respectively. This was associated with a 33.3 % increase in GA3 level and enhanced auxin signaling. Leaves synthesized IAA under low light, which was transported to the corms to promote GA synthesis, facilitating starch degradation through a 228.7 % increase in amylase activity. Exogenous applications of GA and IAA, as well as the use of their synthesis or transport inhibitors, confirmed the synergistic role of these phytohormones in starch metabolism. The unigenes associated with GA biosynthesis and auxin signaling were upregulated under low light, highlighting the IAA-GA module role in starch degradation. Moreover, increased respiration rate and invertase activity, crucial for ATP biosynthesis and the tricarboxylic acid cycle, were consistent with the upregulation of related unigenes, suggesting that auxin signaling accelerates starch degradation by promoting energy metabolism. Upregulated of auxin signaling (CsSAUR32) and starch metabolism (CsSnRK1) genes under low light suggests that auxin directly regulate starch degradation in saffron corms. This study elucidates that low light modulates auxin and GA interactions to accelerate starch degradation in saffron corms during sprouting, offering insights for optimizing agricultural practices under suboptimal light conditions.
Assuntos
Crocus , Giberelinas , Ácidos Indolacéticos , Luz , Amido , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Amido/metabolismo , Crocus/metabolismo , Crocus/efeitos da radiação , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Reguladores de Crescimento de Plantas/metabolismoRESUMO
PURPOSE: To develop a deep learning model for automated classification of orthopedic hardware on pelvic and hip radiographs, which can be clinically implemented to decrease radiologist workload and improve consistency among radiology reports. MATERIALS AND METHODS: Pelvic and hip radiographs from 4279 studies in 1073 patients were retrospectively obtained and reviewed by musculoskeletal radiologists. Two convolutional neural networks, EfficientNet-B4 and NFNet-F3, were trained to perform the image classification task into the following most represented categories: no hardware, total hip arthroplasty (THA), hemiarthroplasty, intramedullary nail, femoral neck cannulated screws, dynamic hip screw, lateral blade/plate, THA with additional femoral fixation, and post-infectious hip. Model performance was assessed on an independent test set of 851 studies from 262 patients and compared to individual performance of five subspecialty-trained radiologists using leave-one-out analysis against an aggregate gold standard label. RESULTS: For multiclass classification, the area under the receiver operating characteristic curve (AUC) for NFNet-F3 was 0.99 or greater for all classes, and EfficientNet-B4 0.99 or greater for all classes except post-infectious hip, with an AUC of 0.97. When compared with human observers, models achieved an accuracy of 97%, which is non-inferior to four out of five radiologists and outperformed one radiologist. Cohen's kappa coefficient for both models ranged from 0.96 to 0.97, indicating excellent inter-reader agreement. CONCLUSION: A deep learning model can be used to classify a range of orthopedic hip hardware with high accuracy and comparable performance to subspecialty-trained radiologists.
RESUMO
Plant-derived polysaccharides are important components for biological functions. The objective of this study is to study the mechanisms by which polysaccharides from three Huanglian (Rhizome Coptidis, HL) of Coptis chinensis, C. deltoidea, and Coptis teeta affect type 2 diabetes mellitus (T2DM) by analyzing the gut microbiome and their metabolites. A long-term high-fat diet (HFD) combined with streptozocin (STZ) induction was used to construct the T2DM mice model. The histopathology of liver, pancreas, and colon, biochemical indexes related to mice were determined to assess the ameliorative effects of these three HL polysaccharides (HLPs) on T2DM. The results indicated that oral HLPs improved hyperglycemia, insulin resistance, blood lipid levels, and ß-cell function. Further, HLPs elevated the growth of advantageous beneficial bacteria within the gut microbiota and raised the concentrations of short-chain fatty acids (SCFAs), particularly butyric acid. Metabolic analyses showed that HLPs ameliorated the effects of T2DM on microbial-derived metabolites and related metabolic pathways, especially the biosynthetic pathways of phenylalanine, tyrosine, and tryptophan. In the combined analysis, many associations of T2DM-related biochemical indicators with gut microbes and their metabolites were extracted, which suggested the important role of gut microbiome and fecal metabolome in the amelioration of type 2 diabetes mellitus by HLPs.
Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Fezes , Microbioma Gastrointestinal , Metaboloma , Polissacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/química , Fezes/microbiologia , Metaboloma/efeitos dos fármacos , Masculino , Estreptozocina , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Coptis/química , Resistência à InsulinaRESUMO
The fruit of Phyllanthus emblica L. (FEPE) has a long history of use in Asian folk medicine. The main bioactive compounds in FEPE are polyphenols, known for their potent antioxidant, anti-inflammatory, and hypolipidemic activities. The present study aimed to investigate the intervention effect of FEPE (100 and 200 mg/kg) on hyperlipidemia for 8 weeks and preliminarily explored the potential mechanism by microbiome-metabolome analysis. The results showed that a high-dose FEPE (200 mg/kg) effectively alleviated dyslipidaemic symptoms and body weight gain in hyperlipidemic mice induced by a high-fat diet (HFD). Microbiome analysis showed that FEPE altered the structure of the intestinal microbiota, which included an increase in specific probiotics (such as Akkermansia, Anaerovorax, and Bacteroides) and a decrease in harmful bacteria (including A2, Acetitomaculum, Candidatus_Arthromitus, Lachnospiraceae_NK4A136_group, Lachnospiraceae_NK4B4_group, Rikenella, and Streptococcus), as well as a reduction in the level of short-chain fatty acids (SCFAs). In addition, significant changes in the hepatic metabolome were observed, and eight key metabolites associated with betaine metabolism, lysine degradation, methionine metabolism, and fatty acid metabolism pathways were primarily filtered. The correlated analysis identified several key "microbiota-metabolite" axes in the treatment of hyperlipidemia by FEPE extract. In conclusion, the present study is expected to provide a basis for treating hyperlipidemia with FEPE from the perspective of the microbiome-liver metabolome axis.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume is a traditional Chinese medicine with the effects of improving the deficiency of the body and maintaining health, and polysaccharide (GEP) is one of the effective ingredients to play these activities of G. elata. Traditionally, G. elata is orally administered, so the activities of GEP are associated with digestive and intestinal metabolism. However, the digestive behavior of GEP and its effects on the human gut microbiota are unclear and need to be fully studied. AIM OF THE STUDY: This study aimed to investigate the changes in structural characteristics of GEP during digestion and the related impacts of its digestive product on gut microbiota in human fecal fermentation, and to explain the beneficial mechanism of GEP on human health from the perspective of digestive characteristics and "gut" axis. MATERIALS AND METHODS: The changes of reducing sugars, free monosaccharides and physicochemical properties of GEP during digestion were investigated by GPC, HPLC, FT-IR, CD, NMR, SEM, and TGA. Moreover, polysaccharide consumption, pH value changes, SCFAs production, and changes in gut microbiota during fermentation were also discussed. RESULTS: During digestion of GEP, glucose was partially released causing a decrease in molecular weight, and a change in monosaccharide composition. In addition, the characteristics of GEP before and after digestion, including configuration, morphology, and stability, were different. The digestive product of GEP was polysaccharide (GEP-I), which actively participated in the fecal fermentation process. As the fermentation time increased, the utilization of GEP-I by the microbiota gradually increased. The abundance of probiotics such as Bifidobacterium, Collinsella, Prevotella, and Faecalibacterium was significantly increased, and the abundance of pathogenic Shigella, Dorea, Desulfovibrio, and Blautia was significantly inhibited, thereby suggesting that GEP has the potential to maintain human health through the "gut" axis. In addition, the beneficial health effects of GEP-I have also been observed in the influence of microbial metabolites. During the fermentation of GEP-I, the pH value gradually decreased, and the contents of beneficial metabolites such as acetic acid, propionic acid, and caproic acid significantly increased. CONCLUSION: The structure of GEP changed significantly during digestion, and its digestive product had the potential to maintain human health by regulating gut microbiota, which may be one of the active mechanisms of GEP.
Assuntos
Gastrodia , Microbioma Gastrointestinal , Humanos , Gastrodia/química , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Polissacarídeos/química , Fermentação , DigestãoRESUMO
Parkinson's disease (PD) is a common, chronic, and progressive degenerative disease of the central nervous system for which there is no effective treatment. Gastrodia elata is a well-known food and medicine homologous resource with neuroprotective potential. Gastrodia elata polysaccharide (GEP), which is a highly active and safe component in Gastrodia elata, is an important ingredient in the development of functional products. In this study, GEP was administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice over 3 weeks to investigate its neuroprotective effects. The results showed that GEP significantly alleviated the motor dysfunction of PD mice, inhibited the accumulation of α-synuclein, and reduced the loss of dopaminergic neurons in the brain. Moreover, GEP increased the Bcl-2/Bax ratio and decreased the cleaved-caspase-3 level, suggesting that GEP may ameliorate PD by preventing MPTP-induced mitochondrial apoptosis. GEP also significantly inhibited the increase of GFAP and decreased the levels of TNF-α, IL-1ß, and IL-6 in the brain of PD mice, which may be the result of the inhibition of neuroinflammation by the inactivation of the TLR4/NF-κB pathway. Furthermore, the neuroprotective effects of GEP involve the gut-brain axis, as it has been shown that GEP regulated the dysbiosis of PD-related gut microbiota such as Akkermansia, Lactobacillus, Bacteroides, Prevotella, and Faecalibacterium, increased the content of microbial metabolites SCFAs in the colon and increased the level of occludin that repairs the intestinal barrier of PD mice. In conclusion, this study is expected to provide a theoretical basis for the development and application of functional products with GEP from the perspective of neuroprotective effects.
Assuntos
Gastrodia , Microbioma Gastrointestinal , Fármacos Neuroprotetores , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Polissacarídeos/farmacologiaRESUMO
PURPOSE: To develop a deep learning model to distinguish rheumatoid arthritis (RA) from osteoarthritis (OA) using hand radiographs and to evaluate the effects of changing pretraining and training parameters on model performance. MATERIALS AND METHODS: A convolutional neural network was retrospectively trained on 9714 hand radiograph exams from 8387 patients obtained from 2017 to 2021 at seven hospitals within an integrated healthcare network. Performance was assessed using an independent test set of 250 exams from 146 patients. Binary discriminatory capacity (no arthritis versus arthritis; RA versus not RA) and three-way classification (no arthritis versus OA versus RA) were evaluated. The effects of additional pretraining using musculoskeletal radiographs, using all views as opposed to only the posteroanterior view, and varying image resolution on model performance were also investigated. Area under the receiver operating characteristic curve (AUC) and Cohen's kappa coefficient were used to evaluate diagnostic performance. RESULTS: For no arthritis versus arthritis, the model achieved an AUC of 0.975 (95% CI: 0.957, 0.989). For RA versus not RA, the model achieved an AUC of 0.955 (95% CI: 0.919, 0.983). For three-way classification, the model achieved a kappa of 0.806 (95% CI: 0.742, 0.866) and accuracy of 87.2% (95% CI: 83.2%, 91.2%) on the test set. Increasing image resolution increased performance up to 1024 × 1024 pixels. Additional pretraining on musculoskeletal radiographs and using all views did not significantly affect performance. CONCLUSION: A deep learning model can be used to distinguish no arthritis, OA, and RA on hand radiographs with high performance.
Assuntos
Artrite Reumatoide , Aprendizado Profundo , Osteoartrite , Humanos , Estudos Retrospectivos , Radiografia , Osteoartrite/diagnóstico por imagem , Artrite Reumatoide/diagnóstico por imagemRESUMO
The early spring is a seasonal high-light "window" for new leaf growth and photosynthetic carbon capture by the shade-tolerant evergreen understory plants. However, it remains unclear how light regulates the source-sink relationship between rhizome (RO), mature leaf (ML), and immature leaf (IL) during Coptis chinensis leaf expansion. Understanding this relationship is essential to reducing RO reserve degradation and ultimately promote RO biomass accumulation. The plants grew in an artificial climate chamber with low (50 µmol m-2 s-1) and relatively high (200 µmol m-2 s-1) light intensity treatments. Leaf fluorescence, foliar phosphorus (P) fractions, soluble sugars, starch, total P, and alkaloid concentrations in ILs, MLs, and RO were measured, and 13C labeling was used to indicate the direction of photosynthetic carbon flow between organs. The plants grown under high light intensity had higher levels of starch in RO and higher RO biomass at the end of the year compared to those grown under low light intensity. The photosystem II (PSII) operating efficiency [Y(II)], relative electron transport rate (rETR), and photochemical quenching (qP), as well as sucrose and glucose, in ILs and MLs under relatively high light, was higher than those under low light. The glucose and starch concentrations in ILs at 35 d was significantly higher than that at 15 d when plants were under 200 µmol m-2 s-1, while they were not significantly changed and remained low at 50 µmol m-2 s-1. The 13C was detected in the RO when plants were grown at 200 µmol m-2 s-1, regardless of ILs and MLs 13C labeling, while no 13C was detected in the RO when plants were under 50 µmol m-2 s-1. Additionally, the proportion of photosynthetic transport from ILs to MLs was significantly higher than that from MLs to ILs under the 50-µmol m-2 s-1 limit. Total P concentration in ILs was lower under relatively high light, but there was no difference in nucleic acid P concentration in ILs under the two light intensity treatments. The alkaloid concentration in RO was lower under 200 µmol m-2 s-1 than that under 50 µmol m-2 s-1. We propose that relatively high light reduces the need for carbohydrates and P stored in the RO to support IL growth by (1) accelerating the sink-to-source transition in ILs, which inhibits the use of reserves in the RO; (2) using energy from MLs to support IL growth, thereby reducing RO reserve consumption, and (3) reducing the demand for P by investing less in the development of photosynthetic machinery. Furthermore, under low light, MLs serve as a sink and rely on other organs for support, directly or indirectly exacerbating the reserves lost in the RO.
RESUMO
Coptis plants (Ranunculaceae) contain high levels of isoquinoline alkaloids and have a long history of medicinal use. Coptis species are of great value in pharmaceutical industries and scientific research. Mitochondria are considered as one of the central units for receiving stress signals and arranging immediate responses. Comprehensive characterizations of plant mitogenomes are imperative for revealing the relationship between mitochondria, elucidating biological functions of mitochondria and understanding the environmental adaptation mechanisms of plants. Here, the mitochondrial genomes of C. chinensis, C. deltoidea and C. omeiensis were assembled through the Nanopore and Illumina sequencing platform for the first time. The genome organization, gene number, RNA editing sites, repeat sequences, gene migration from chloroplast to mitochondria were compared. The mitogenomes of C. chinensis, C. deltoidea and C. omeiensis have six, two, two circular-mapping molecules with the total length of 1,425,403 bp, 1,520,338 bp and 1,152,812 bp, respectively. The complete mitogenomes harbors 68-86 predicted functional genes including 39-51 PCGs, 26-35 tRNAs and 2-5 rRNAs. C. deltoidea mitogenome host the most abundant repeat sequences, while C. chinensis mitogenome has the largest number of transferred fragments from its chloroplasts. The large repeat sequences and foreign sequences in the mitochondrial genomes of Coptis species were related to substantial rearrangements, changes in relative position of genes and multiple copy genes. Further comparative analysis illustrated that the PCGs under selected pressure in mitochondrial genomes of the three Coptis species mainly belong to the mitochondrial complex I (NADH dehydrogenase). Heat stress adversely affected the mitochondrial complex I and V, antioxidant enzyme system, ROS accumulation and ATP production of the three Coptis species. The activation of antioxidant enzymes, increase of T-AOC and maintenance of low ROS accumulation in C. chinensis under heat stress were suggested as the factors for its thermal acclimation and normal growth at lower altitudes. This study provides comprehensive information on the Coptis mitogenomes and is of great importance to elucidate the mitochondrial functions, understand the different thermal acclimation mechanisms of Coptis plants, and breed heat-tolerant varieties.
RESUMO
The grey correlation-TOPSIS method was used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos, and the Fourier transform near-infrared(NIR) and mid-infrared(MIR) spectroscopy was applied to establish the identification model of origin herbs of Lonicerae Japonicae Flos by combining chemometrics and spectral fusion strategies. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, caffeic acid, secoxyloganin, isoquercitrin, isochlorogenic acid B, isochlorogenic acid A, and isochlorogenic acid C in six origin herbs of Lonicerae Japonicae Flos was determined by high-performance liquid chromatography(HPLC), and their quality was evaluated by the grey correlation-TOPSIS method. The Fourier transform NIR and MIR spectra of six origin herbs of Lonicerae Japonicae Flos(Lonicera japonica, L. macranthoides, L. hypoglauca, L. fulvotomentosa, L. confuse, and L. similis) were collected. At the same time, principal component analysis(PCA), support vector machine(SVM), and spectral data fusion technology were combined to determine the optimal identification method for the origin herbs of Lonicerae Japonicae Flos. There were differences in the quality of the origin herbs of Lonicerae Japonicae Flos. Specifically, there were significant differences between L. japonica and the other five origin herbs(P<0.01). The quality of L. similis was significantly different from that of L. fulvotomentosa, L. macranthoides, and L. hypoglauca(P=0.008, 0.027, 0.01), and there were also significant differences in the quality of L. hypoglauca and L. confuse(P=0.001). The PCA and SVM 2D models based on a single spectrum could not be used for the effective identification of the origin herbs of Lonicerae Japonicae Flos. The data fusion combined with the SVM model further improved the identification accuracy, and the identification accuracy of the mid-level data fusion reached 100%. Therefore, the grey correlation-TOPSIS method can be used to evaluate the quality of the origin herbs of Lonicerae Japonicae Flos. Based on the infrared spectral data fusion strategy and SVM chemometric model, it can accurately identify the origin herbs of Lonicerae Japonicae Flos, which can provide a new method for the origin identification of medicinal materials of Lonicerae Japonicae Flos.
Assuntos
Medicamentos de Ervas Chinesas , Lonicera , Medicamentos de Ervas Chinesas/química , Flores/química , Controle de Qualidade , Lonicera/química , Cromatografia Líquida de Alta Pressão/métodosRESUMO
As natural medicines in complementary and alternative medicine, edible and medicinal resources are being gradually recognized throughout the world. According to statistics from the World Health Organization, about 80% of the worldwide population has used edible and medicinal resource products to prevent and treat diseases. Polysaccharides, one of the main effective components in edible and medicinal resources, are considered ideal regulators of various biological responses due to their high effectiveness and low toxicity, and they have a wide range of possible applications for the development of functional foods for the regulation of common, frequently occurring, chronic and severe diseases. Such applications include the development of polysaccharide products for the prevention and treatment of neurodegenerative diseases that are difficult to control by a single treatment, which is of great value to the aging population. Therefore, we evaluated the potential of polysaccharides to prevent neurodegeneration by their regulation of behavioral and major pathologies, including abnormal protein aggregation and neuronal damage caused by neuronal apoptosis, autophagy, oxidative damage, neuroinflammation, unbalanced neurotransmitters, and poor synaptic plasticity. This includes multi-target and multi-pathway regulation involving the mitochondrial pathway, MAPK pathway, NF-κB pathway, Nrf2 pathway, mTOR pathway, PI3K/AKT pathway, P53/P21 pathway, and BDNF/TrkB/CREB pathway. In this paper, research into edible and medicinal resource polysaccharides for neurodegenerative diseases was reviewed in order to provide a basis for the development and application of polysaccharide health products and promote the recognition of functional products of edible and medicinal resources.
Assuntos
Doenças Neurodegenerativas , Humanos , Idoso , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Fosfatidilinositol 3-Quinases , Estresse Oxidativo , Envelhecimento , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêuticoRESUMO
Mosquitoes are generally recognized as the most important vector of many zoonotic pathogens. In this study, seven mosquitoes species were identified (Anopheles pullus, Anopheles sinensis, Anopheles lesteri, Anopheles kleini, Ochlerotatus dorsalis, Aedes koreicus and Culex inatomii) in samples collected from Yingkou City, Liaoning Province, Northeastern China. A novel Rickettsia species was detected in Anopheles sinensis (two of 71, 2.82%) and Anopheles pullus (one of 106, 0.94%) mosquitoes. Genetic analysis indicated that the rrs and ompB genes have highest 99.60% and 97.88%-98.14% identities to Rickettsia felis, an emerging human pathogen of global concern mainly harboured by fleas, mosquitoes and booklice. The gltA sequences of these strains have 99.72% of nucleotide similarity with Rickettsia endosymbiont of Medetera jacula. The groEL sequences have 98.37% similarity to both Rickettsia tillamookensis and Rickettsia australis. The htrA sequences have 98.77% similarity to Rickettsia lusitaniae. In the phylogenetic tree based on concatenated nucleotide sequences of rrs, gltA, groEL, ompB and htrA genes, these strains are closely related to R. felis. Herein, we name it 'Candidatus Rickettsia yingkouensis'. Its human pathogenicity to humans and animals is still to be determined.
Assuntos
Aedes , Anopheles , Rickettsia felis , Rickettsia , Animais , Humanos , Rickettsia felis/genética , Filogenia , Mosquitos Vetores , Rickettsia/genética , ChinaRESUMO
Coptis species are the main source of Rhizoma Coptidis (RC) drugs, which have always been used to treat Alzheimer's disease in the clinical experience of ancient China. However, many species of this genus have been largely underutilized until now. With this fact, this research has been designed to investigate for the first time the anti-acetylcholinesterase (AChE) property of different extracts for RC drugs from four Coptis species (C. chinensis, C. deltoidea, C. teeta and C. omeiensis) and to quantify the main alkaloids. Petroleum ether, ethyl acetate and n-butanol fractions of RC drugs were sequentially collected using an accelerated solvent extraction technique. Spectrum-effect relationship and molecular docking were applied to analyse the relationships between alkaloids and AChE inhibitory activity. The N-butanol extract was proven to be the main active fraction, and C. teeta may be the best source of RC drugs for Alzheimer's disease treatment, with significantly lower IC 20, IC 50 and IC 80 values for AChE inhibition. The UPLC/QqQ-MS quantitative analysis showed that the accumulations of 10 alkaloids in RC drugs from different sources greatly varied. Three data processing methods (Random forest, Boruta and Pearson correlation) comprehensively analysed the spectrum-effect relationship and revealed that columbamine, berberine and palmatine were the most important AChE inhibitors that could be used as quality markers to select RC drugs for Alzheimer's disease treatment. In addition, the dominant compounds were successfully docked against AChE to verify the binding affinity and interactions with the active site. The present study can contribute to the reasonable development and utilization of RC drugs from different sources, especially to provide certain evidence for their application in the treatment of Alzheimer's disease.
RESUMO
PURPOSE: Prompt identification of traumatic pelvic fractures in the elderly is critical to guide clinical management; however, the accuracy of pelvic radiographs is often compromised by multiple factors. The purpose of this study is to examine the diagnostic accuracy of radiographs for the detection of pelvic fractures, with CT as the standard of reference. METHODS: A retrospective review was performed of patients ≥ 65 years with traumatic pelvic fractures evaluated with both pelvic radiography and computed tomography (CT) from May 2016 to October 2019. Pelvic fractures were classified into fractures of the pubis, ilium, ischium, sacrum, and acetabulum. All pelvic radiographs were independently reviewed by two emergency radiologists. Original CT reports were utilized for the reference standard. RESULTS: 177 patients were included, with a total of 555 fractures. The mean age was 81 years and 68% were female. The most common mechanism of injury was fall (62%), followed by motor vehicle accidents (18%). The most fractured bone was the pubis (314/555 fractures). Global pooled sensitivity for pelvic radiographs in detecting pelvic fractures compared to CT was 48%, with a specificity of 93%. Sensitivity for the detection of pelvic fractures is classified by the following types: pubis 61%, acetabulum 60%, ilium 41%, sacrum 20%, and ischium 17%. Eighteen patients (10%) required surgical fixation. Mortality was 8%. CONCLUSION: Pelvic radiographs have low sensitivity in detecting traumatic pelvic fractures. These radiographically occult fractures may be clinically significant as a cause of long-term pain and may require orthopedic consultation and possible surgical management.
Assuntos
Fraturas Ósseas , Ossos Pélvicos , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Ossos Pélvicos/diagnóstico por imagem , Ossos Pélvicos/lesões , Fraturas Ósseas/diagnóstico por imagem , Fraturas Ósseas/cirurgia , Radiografia , Acetábulo/lesões , Sacro/lesões , Estudos RetrospectivosRESUMO
Monascus rice (MR) and highland barley monascus (HBM), the monascus fermented products, are applied in food and medicine to reduce cholesterol and promote digestion. Due to the fermentation substrates, their compositions are different. However, the exact differences have not been reported to date. By UPLC-Q-Orbitrap HRMS analysis, multiple components of twenty batches of MR and HBM samples were identified. In total, 100 components were confirmed (e.g., monacolins, pigments, decalin derivatives, amino acids). Then, principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to filter the components of MR and HBM. In the PCA model, 88.1% of the total variance was uncovered. The OPLS-DA model showed better discrimination between MR and HBM, and the values of R2X, R2Y, and Q2 were 0.837, 0.996, and 0.956, respectively. Based on the value of the variable importance in projection (VIP) and the result of the t-test, 424 components (VIP > 1, p < 0.05) were acquired. Finally, 11 differential components were selected as the characteristic compounds to discriminate between MR and HBM: the content of 9 monacolins (3-hydroxy-3,5-dihydrodehydromonacolin K, monacolin K, dehydromonacolin K, dehydromonacolin J hydroxy acid, monacophenyl, dihydromonacolin J hydroxy acid, monacolin L, dehydromonacolin J, and monacolin R) in HBM was higher than the content in MR, but the content of 2 pigments (ankaflavin and monascin) was lower in HBM and higher in MR. The findings revealed the similarities and differences in the chemical composition between MR and HBM, which is expected to provide a basis for quality control of HBM.
Assuntos
Hordeum , Monascus , Oryza , Fermentação , Hidroxiácidos/metabolismo , Lovastatina/análise , Monascus/química , Oryza/químicaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The raw and honey-processed P. cyrtonema recorded in ancient classics of Chinese medicine as having the effect of moisturizing the lungs and relieving coughs, and it has also been proved to have therapeutic effects on lung diseases in modern research. Polysaccharides are the main components with biological activities in raw and honey-processed P. cyrtonema, but there is no research for their lung-protective effect. AIM OF STUDY: This study aimed to investigate the protective effect and the possible mechanism of polysaccharides from raw and honey-processed P. cyrtonema in LPS-induced acute lung injury in mice. MATERIALS AND METHODS: Polysaccharides, PCP and HPCP, were respectively separated and extracted from raw and honey-processed P. cyrtonema, and the molecular weight, monosaccharide composition and other basic chemical characteristics were analyzed by HPGCP, HPLC, FI-IR, and NMR. The model of ALI mice was established by intratracheal instillation of LPS. Moreover, the protective effects of PCP and HPCP for ALI mice were evaluated by detecting the wet-to-dry ratio and histopathology in the lungs, the content of inflammatory factors TNF-α, IL-6, IL-1ß in BLAF, and the content of MPO and SOD in lung tissue. In addition, the lung-protective mechanism of PCP and HPCP was explored by detecting the levels of some proteins and mRNA related to inflammation and oxidative stress pathways. RESULTS: PCP and HPCP with molecular weights of 8.842 × 103 and 5.521 × 103Da were mainly composed of three monosaccharides. Moreover, it is found that fructose and galactose were mainly ß-D, and glucose was α-D. Both PCP and HPCP could significantly improve lung injury, reduce the level of inflammatory factors in BALF and the level of MPO in lung tissue, and increase the level of SOD. In addition, PCR and WB indicated that PCP and HPCP at least inhibited pulmonary inflammation through the NF-κB pathway, and reduced the occurrence of pulmonary oxidative stress through the AMPK-Nrf2 pathway. CONCLUSIONS: Polysaccharides from raw and honey-processed P. cyrtonema had a protective effect in LPS-induced lung injury in mice. This effect may be related to the antioxidant and anti-inflammatory activities of PCP and HPCP in the lungs through the NF-κB pathway and AMPK-Nrf2 pathway. And HPCP seems to perform more than PCP.
Assuntos
Lesão Pulmonar Aguda , Polygonatum , Proteínas Quinases Ativadas por AMP/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/prevenção & controle , Animais , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/toxicidade , Pulmão , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Polygonatum/químicaRESUMO
Agarwood is a well-known and precious traditional Chinese medicine, has been widely applied as drugs and spices for century. The large demand for this material has deeply stimulated the emergence of numerous cultivated products. However, it is difficult to distinguish wild agarwood from cultivated agarwood, and the chemical composition difference between them is not clear. In this study, an integrated method of Fourier transform near-infrared (FT-NIR), gas chromatography-mass spectrometry (GC-MS) and ultraperformance liquid chromatography Quadrupole-Exactive Orbitrap tandem mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS) was developed to explore chemical variation between wild and cultivated agarwood in combination with multivariate statistical analysis. Twenty-four wild and cultivated agarwood samples were collected from different regions. FT-NIR profiles were used to obtain the holistic metabolic characterization in combination with principal component analysis (PCA). A total of seventy-six and seventy-nine metabolites, including volatile components and 2-(2-phenethyl) chromones derivatives, were successfully identified by GC-MS and UHPLC-Q-Exactive Orbitrap/MS, respectively. Thereafter, the orthogonal-partial least square method-discriminant analysis (OPLS-DA) and variable importance in the projection (VIP) were used to screen potential characteristic chemical components (VIP > 1) in wild and cultivated agarwood, respectively. Finally, eight key chemical markers were putatively identified by two techniques to distinguish agarwood from different origins, which can be found that sesquiterpenes, aromatics, terpenoids, 2-(2-phenylethyl) chromones of the flidersia type (FTPECs) and tetrahydro-2-(2-phenylethyl) chromones (THPECs) are the most important metabolites. Summary, this research presented a comprehensive metabolomic variation between wild and cultivated agarwood on the basis of a multi-technology platform, which laid a foundation for distinguishing the two ecotypes of agarwood and was conducive to the quality control of this resource.
Assuntos
Cromatografia Líquida/métodos , Medicamentos de Ervas Chinesas , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica/métodos , Thymelaeaceae , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/classificação , Metaboloma/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Thymelaeaceae/química , Thymelaeaceae/classificaçãoRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Zanthoxylum armatum DC is a traditional medicinal plant. It is widely used in clinical treatment and disease prevention in China, India and other regions. Modern studies have reported the phytotoxicity, cytotoxicity and the animal toxicity of Zanthoxylum armatum DC, and the damage of genetic material has been observed in plants, but the detailed mechanism has not been explored. Besides, the toxicity of normal mammalian cells has not been evaluated. AIM OF THE STUDY: To evaluate the effects and underlying mechanism of genetic material damage in BRL 3A cells induced by Zanthoxylum armatum DC. MATERIALS AND METHODS: Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry was used for identification of compounds in methanol extract of Zanthoxylum armatum DC. BRL 3A cells were incubated with different concentrations of methanol extract of Zanthoxylum armatum DC (24 h). The cytotoxicity of extract was assessed with cell viability, LDH release rate, and ROS production. The damage of genetic material was assessed with OTM value of comet cells, cell cycle and the expression levels of p-ATM, p- Chk2, Cdc25A, and CDK2. RESULTS: Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry investigation revealed the presence of compounds belonging to flavonoid, fatty acid and alkaloid groups. The viability of BRL 3A cells was reduced in a time-dose dependent manner treated by methanol extract of Zanthoxylum armatum DC. It increased LDH release rate and ROS production, activated the DNA double strand damage marker of γH2AX and produced comet cells. In addition, methanol extract of Zanthoxylum armatum DC caused ATM-mediated DNA damage, further phosphorylated Chk2, inhibited cell cycle related proteins, and arrested the G1/S cycle. CONCLUSIONS: Methanol extract of Zanthoxylum armatum DC induces DNA damage and further leads G1/S cell cycle arrest by triggering oxidative stress in the BRL 3A cells. This study provides some useful evidences for its development as an antitumor drug via activation of ATM/Chk2.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Quinase do Ponto de Checagem 2/metabolismo , Dano ao DNA/efeitos dos fármacos , Extratos Vegetais/farmacologia , Zanthoxylum/química , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular , Sobrevivência Celular , Quinase do Ponto de Checagem 2/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/química , Ratos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacosRESUMO
Root rot reduces the yield and medical quality of C. chinensis (Cc). Previous studies of Coptis root rot focused on the identification of pathogens and the rhizosphere microbial community composition. The present study aimed to identify potential pathogenic and antagonistic microorganisms associated with root rot based on a high-throughput sequencing technique to prevent this disease. Healthy and diseased Cc in the endosphere and rhizosphere from the same field were collected to investigate the differences in microbiome composition and function. The results showed that the composition and function of microbes were different. The numbers of animal pathogens, soil saprotrophs, plant saprotrophs, and wood saprotrophs in the endosphere of diseased Cc were higher than those in the healthy endosphere and were dominated by Phaeosphaeriaceae, Cladorrhinum, Fusarium, Exophiala, and Melanommataceae. Fusarium, Volutella, Cladorrhinum, Cylindrocarpon, and Exophiala were significantly enriched in the endosphere of the diseased plants. Co-occurrence network analysis showed that Bacillus was negatively correlated with Fusarium, Volutella, and Cylindrocarpon, indicating that Bacillus may be antagonistic microorganisms. To verify the sequencing results, F. solani and F. avenaceum were isolated and verified as pathogens, and 14 Bacillus strains were isolated, which displayed an apparent suppression effect against the two pathogens on PDA medium and detached roots. The strategy of high-throughput sequencing has the potential for the comprehensive identification of pathogenic and antagonistic microorganisms for plant disease. These results provide research ideas and microbial resources for future studies on mitigating or preventing root rot damage to Cc.
Assuntos
Coptis/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Doenças das Plantas/genética , Microbiologia do SoloRESUMO
Arbuscular mycorrhiza fungi (AMFs) are a group of soil-dwelling fungi that form symbiotic associations with plants, to mediate the secondary metabolism and production of active ingredients in aromatic and medicinal plants. Currently, there is little research on Salvia miltiorrhiza Bge. inoculation with native AMFs and the concomitant effects on growth and secondary metabolites. In this study, S. miltiorrhiza was treated with eight AMFs, i.e., Glomus formosanum; Gl. tenebrosum; Septoglomus constrictum; Funneliformis geosporum; Rhizophagus manihotis; Ambispora gerdemanii; Acaulospora laevis; Ac. tuberculata, to investigate the influence of AMF inoculation on biomass and secondary production under greenhouse conditions in S. miltiorrhiza roots. The results showed that mycorrhiza formation rates were between 54.83 and 86.10%. Apart from Ac. laevis and Gl. tenebrosum treatment, the roots biomass of the other treatment groups was effectively increased, and the fresh and dry weight of the plant inoculated with Fu. geosporum were increased by 86.76 and 86.95%, respectively. Specifically, AMF treatments also impacted on phenolic acids production; inoculation with both Fu. geosporum or Ac. laevis significantly reduced total phenolic acids, whereas the other treatments effectively increased these levels, of which Gl. formosanum generated significant levels. Most AMF-plant symbiotic experiments facilitated phenolic acid accumulation in the secondary metabolites of S. miltiorrhiza (except Ac. laevis). This study showed that most native AMFs inoculation with S. miltiorrhiza promoted roots growth and increased secondary metabolites production (especially phenolic acids). Going forward, inoculation of native AMF is a promising method to improve the quality and yield of S. miltiorrhiza and should be considered during production.