Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res ; 330: 115605, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38006718

RESUMO

Growing evidence suggests that major psychiatric disorders (MPDs) share common etiologies and pathological processes. However, the diagnosis is currently based on descriptive symptoms, which ignores the underlying pathogenesis and hinders the development of clinical treatments. This highlights the urgency of characterizing molecular biomarkers and establishing objective diagnoses of MPDs. Here, we collected untargeted metabolomics, proteomics and DNA methylation data of 327 patients with MPDs, 131 individuals with genetic high risk and 146 healthy controls to explore the multi-omics characteristics of MPDs. First, differential metabolites (DMs) were identified and we classified MPD patients into 3 subtypes based on DMs. The subtypes showed distinct metabolomics, proteomics and DNA methylation signatures. Specifically, one subtype showed dysregulation of complement and coagulation proteins, while the DNA methylation showed abnormalities in chemical synapses and autophagy. Integrative analysis in metabolic pathways identified the important roles of the citrate cycle, sphingolipid metabolism and amino acid metabolism. Finally, we constructed prediction models based on the metabolites and proteomics that successfully captured the risks of MPD patients. Our study established molecular subtypes of MPDs and elucidated their biological heterogeneity through a multi-omics investigation. These results facilitate the understanding of pathological mechanisms and promote the diagnosis and prevention of MPDs.


Assuntos
Transtornos Mentais , Multiômica , Humanos , Metaboloma , Transtornos Mentais/genética , Metabolômica/métodos , Proteômica
2.
Transl Psychiatry ; 13(1): 329, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880287

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by core symptoms that consist of social deficits and repetitive behaviors. Unfortunately, no effective medication is available thus far to target the core symptoms of ASD, since the pathogenesis remains largely unknown. To investigate the pathogenesis of the core symptoms in ASD, we constructed Shank1 P1812L-knock-in (KI) mice corresponding to a recurrent ASD-related mutation, SHANK1 P1806L, to achieve construct validity and face validity. Shank1 P1812L-KI heterozygous (HET) mice presented with social deficits and repetitive behaviors without the presence of confounding comorbidities. HET mice also exhibited downregulation of metabotropic glutamate receptor (mGluR1) and associated signals, along with structural abnormalities in the dendritic spines and postsynaptic densities. Combined with findings from Shank1 R882H-KI mice, our study confirms that mGluR1-mediated signaling dysfunction is a pivotal mechanism underlying the core symptoms of ASD. Interestingly, Shank1 P1812L-KI homozygous (HOM) mice manifested behavioral signs of impaired long-term memory rather than autistic-like core traits; thus, their phenotype was markedly different from that of Shank1 P1812L-KI HET mice. Correspondingly, at the molecular level, Shank1 P1812L-KI HOM displayed upregulation of AMPA receptor (GluA2)-related signals. The different patterns of protein changes in HOM and HET mice may explain the differences in behaviors. Our study emphasizes the universality of mGluR1-signaling hypofunction in the pathogenesis of the core symptoms in ASD, providing a potential target for therapeutic drugs. The precise correspondence between genotype and phenotype, as shown in HOM and HET mice, indicates the importance of reproducing disease-related genotypes in mouse models.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Receptores de Glutamato Metabotrópico , Animais , Camundongos , Transtorno Autístico/genética , Regulação para Baixo , Receptores de Glutamato Metabotrópico/genética , Modelos Animais de Doenças , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
3.
J Am Chem Soc ; 143(36): 14738-14747, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34467764

RESUMO

Oxidative stress produces a variety of radicals in DNA, including pyrimidine nucleobase radicals. The nitrogen-centered DNA radical 2'-deoxycytidin-N4-yl radical (dC·) plays a role in DNA damage mediated by one electron oxidants, such as HOCl and ionizing radiation. However, the reactivity of dC· is not well understood. To reduce this knowledge gap, we photochemically generated dC· from a nitrophenyl oxime nucleoside and within chemically synthesized oligonucleotides from the same precursor. dC· formation is confirmed by transient UV-absorption spectroscopy in laser flash photolysis (LFP) experiments. LFP and duplex DNA cleavage experiments indicate that dC· oxidizes dG. Transient formation of the dG radical cation (dG+•) is observed in LFP experiments. Oxidation of the opposing dG in DNA results in hole transfer when the opposing dG is part of a dGGG sequence. The sequence dependence is attributed to a competition between rapid proton transfer from dG+• to the opposing dC anion formed and hole transfer. Enhanced hole transfer when less acidic O6-methyl-2'-deoxyguanosine is opposite dC· supports this proposal. dC· produces tandem lesions in sequences containing thymidine at the 5'-position by abstracting a hydrogen atom from the thymine methyl group. The corresponding thymidine peroxyl radical completes tandem lesion formation by reacting with the 5'-adjacent nucleotide. As dC· is reduced to dC, its role in the process is traceless and is only detectable because of the ability to independently generate it from a stable precursor. These experiments reveal that dC· oxidizes neighboring nucleotides, resulting in deleterious tandem lesions and hole transfer in appropriate sequences.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Desoxicitidina/química , Radicais Livres/química , DNA/química , Desoxicitidina/análogos & derivados , Desoxicitidina/efeitos da radiação , Desoxiguanosina/química , Oximas/química , Oximas/efeitos da radiação , Fotólise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA