Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(10)2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37408231

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) plays an important role in plant growth and development, and in the response to various abiotic stresses. However, its role in the responses of barley to low phosphorus (LP) stress remains largely unknown. In the present study, we investigated the root phenotypes and metabolic patterns of LP-tolerant (GN121) and LP-sensitive (GN42) barley genotypes under normal P, LP, and LP with exogenous melatonin (30 µM) conditions. We found that melatonin improved barley tolerance to LP mainly by increasing root length. Untargeted metabolomic analysis showed that metabolites such as carboxylic acids and derivatives, fatty acyls, organooxygen compounds, benzene and substituted derivatives were involved in the LP stress response of barley roots, while melatonin mainly regulated indoles and derivatives, organooxygen compounds, and glycerophospholipids to alleviate LP stress. Interestingly, exogenous melatonin showed different metabolic patterns in different genotypes of barley in response to LP stress. In GN42, exogenous melatonin mainly promotes hormone-mediated root growth and increases antioxidant capacity to cope with LP damage, while in GN121, it mainly promotes the P remobilization to supplement phosphate in roots. Our study revealed the protective mechanisms of exogenous MT in alleviating LP stress of different genotypes of barley, which can be used in the production of phosphorus-deficient crops.


Assuntos
Hordeum , Melatonina , Fósforo , Raízes de Plantas , Estresse Fisiológico , Melatonina/farmacologia , Melatonina/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fósforo/deficiência , Hordeum/efeitos dos fármacos , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Genótipo , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
2.
Front Plant Sci ; 13: 917652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061799

RESUMO

Phosphate (Pi) stress is an important environmental factor that limits plant growth and development. Of various posttranslational modifications (PTMs), protein phosphorylation and succinylation are the two most important PTMs that regulate multiple biological processes in response to Pi stress. However, these PTMs have been investigated individually but their interactions with proteins in response to Pi stress remain poorly understood. In this study, to elucidate the underlying mechanisms of protein phosphorylation and succinylation in response to Pi stress, we performed a global analysis of the barley root phosphorylome and succinylome in Pi starvation and recovery stages, respectively. A total of 3,634 and 884 unique phosphorylated and succinylated proteins, respectively, corresponding to 11,538 and 2,840 phospho- and succinyl-sites, were identified; of these, 275 proteins were found to be simultaneously phosphorylated and succinylated. Gene Set Enrichment Analysis was performed with a Kyoto Encyclopedia of Genes and Genomes pathway database revealing pathways that significantly enriched in the phosphorylome and succinylome. Such pathways, were dynamically regulated by Pi starvation and recovery treatments, and could be partitioned into distinct metabolic processes. In particular, phosphorylated proteins related to purine, the mitogen-activated protein kinase (MAPK) signaling pathway, pyrimidine, and ATP-binding cassette (ABC) transporters were upregulated in both Pi deprivation and recovery stages. Succinylated proteins, significantly upregulated by both Pi starvation and recovery, were enriched in nitrogen metabolism and phenylpropanoid biosynthesis. Meanwhile, succinylated proteins that were significantly downregulated by both Pi starvation and recovery were enriched in lysine degradation and tryptophan metabolism. This highlighted the importance of these metabolic pathways in regulating Pi homeostasis. Furthermore, protein-protein interaction network analyses showed that the response of central metabolic pathways to Pi starvation and recovery was significantly modulated by phosphorylation or succinylation, both individually and together. In addition, we discovered relevant proteins involved in MAPK signaling and phenylpropanoid biosynthetic pathways existing in interactions between phosphorylated and succinylated proteins in response to Pi recovery. The current study not only provides a comprehensive analysis of phosphorylated and succinylated proteins in plant responses to Pi starvation and recovery, but also reveals detailed interactions between phosphorylated and succinylated proteins in barley roots.

3.
Front Plant Sci ; 12: 676432, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335649

RESUMO

Phosphorus (P) deficiency is a major threat to the crop production, and for understanding the response mechanism of plant roots, P stress may facilitate the development of crops with increased tolerance. Phosphorylation plays a critical role in the regulation of proteins for plant responses to biotic and abiotic stress; however, its functions in P starvation/resupply are largely unknown for barley (Hordeum vulgare) growth. Here, we performed a global review of phosphorylation in barley roots treated by P starvation/resupply. We identified 7,710 phosphorylation sites on 3,373 proteins, of which 76 types of conserved motifs were extracted from 10,428 phosphorylated peptides. Most phosphorylated proteins were located in the nucleus (36%) and chloroplast (32%). Compared with the control, 186 and 131 phosphorylated proteins under P starvation condition and 156 and 111 phosphorylated proteins under P resupply condition showed significant differences at 6 and 48 h, respectively. These proteins mainly participated in carbohydrate metabolism, phytohormones, signal transduction, cell wall stress, and oxidases stress. Moreover, the pathways of the ribosome, RNA binding, protein transport, and metal binding were significantly enriched under P starvation, and only two pathways of ribosome and RNA binding were greatly enriched under Pi resupply according to the protein-protein interaction analysis. The results suggested that the phosphorylation proteins might play important roles in the metabolic processes of barley roots in response to Pi deficiency/resupply. The data not only provide unique access to phosphorylation reprogramming of plant roots under deficiency/resupply but also demonstrate the close cooperation between these phosphorylation proteins and key metabolic functions.

4.
Front Plant Sci ; 12: 703255, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290730

RESUMO

Halogeton glomeratus is a succulent annual herbaceous halophyte belonging to the Chenopodiaceae family, has attracted wide attention as a promising candidate for phytoremediation and as an oilseed crop and noodle-improver. More importantly, H. glomeratus has important medicinal value in traditional Chinese medicine. However, there are few comprehensive studies on the nutrients, particularly secondary metabolites. Here, we adopted untargeted metabolomics to compare the differences in metabolites of different tissues (root, stem, leaf, and seed) and identify the compounds related to pharmacological effects and response to abiotic stress in H. glomeratus. A total of 2,152 metabolites were identified, and the metabolic profiles of root, stem, leaf, and seed samples were clearly separated. More than 50% of the metabolites showed significant differences among root, stem, leaf, and seed. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of differential metabolites suggested an extensive alteration in the metabolome among the different organs. Furthermore, the identified metabolites related to pharmacological effects and response to abiotic stress included flavones, flavonols, flavandiols, glucosinolates, isoquinolines, pyridines, indoles, amino acids, lipids, carbohydrates, and ATP-binding cassette transporters. These metabolites have application in treating human cardiovascular diseases, cancers, diabetes, and heart disease, induce sleeping and have nutritive value. In plants, they are related to osmotic adjustment, alleviating cell damage, adjusting membrane lipid action and avoiding toxins. To the best of our knowledge, this is the first metabolomics-based report to overview the metabolite compounds in H. glomeratus and provide a reference for future development and utilization of H. glomeratus.

5.
Front Plant Sci ; 12: 649147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868348

RESUMO

Barley (Hordeum vulgare L.)-a major cereal crop-has low Pi demand, which is a distinct advantage for studying the tolerance mechanisms of phosphorus deficiency. We surveyed dynamic protein succinylation events in barley roots in response to and recovery from Pi starvation by firstly evaluating the impact of Pi starvation in a Pi-tolerant (GN121) and Pi-sensitive (GN42) barley genotype exposed to long-term low Pi (40 d) followed by a high-Pi recovery for 10 d. An integrated proteomics approach involving label-free, immune-affinity enrichment, and high-resolution LC-MS/MS spectrometric analysis was then used to quantify succinylome and proteome in GN121 roots under short-term Pi starvation (6, 48 h) and Pi recovery (6, 48 h). We identified 2,840 succinylation sites (Ksuc) across 884 proteins; of which, 11 representative Ksuc motifs had the preferred amino acid residue (lysine). Furthermore, there were 81 differentially abundant succinylated proteins (DFASPs) from 119 succinylated sites, 83 DFASPs from 110 succinylated sites, 93 DFASPs from 139 succinylated sites, and 91 DFASPs from 123 succinylated sites during Pi starvation for 6 and 48 h and during Pi recovery for 6 and 48 h, respectively. Pi starvation enriched ribosome pathways, glycolysis, and RNA degradation. Pi recovery enriched the TCA cycle, glycolysis, and oxidative phosphorylation. Importantly, many of the DFASPs identified during Pi starvation were significantly overexpressed during Pi recovery. These results suggest that barley roots can regulate specific Ksuc site changes in response to Pi stress as well as specific metabolic processes. Resolving the metabolic pathways of succinylated protein regulation characteristics will improve phosphate acquisition and utilization efficiency in crops.

6.
Plant Dis ; 104(6): 1574-1577, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32293998

RESUMO

Spot blotch, caused by fungal pathogen Bipolaris sorokiniana Shoemaker, is one of the most frequent diseases affecting barley-growing regions worldwide. In this study, we reported the genome sequence of the highly virulent B. sorokiniana strain GN1 using the Illumina HiSeq 4000 platform. In total, 57 million 150-nucleotide paired-end clean reads were obtained and assembled into 96 scaffolds with an estimated genome size of 34.33 Mb. Furthermore, we identified genes that may be associated with strain-specific virulence and performed phylogenetic analysis of GN1 with five other Bipolaris spp. These results for GN1 will provide important information in understanding its molecular underpinning of pathogenicity and help identify novel sources of genetic resistance for improving disease resistance in barley.


Assuntos
Ascomicetos , Hordeum , Resistência à Doença , Humanos , Filogenia , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA