RESUMO
The corrosion behavior of alumina-forming austenitic (AFA) stainless steels with different Nb additions in a supercritical carbon dioxide environment at 500 °C, 600 °C, and 20 MPa was investigated. The steels with low Nb content were found to have a novel structure with a double oxide as an outer Cr2O3 oxide film and an inner Al2O3 oxide layer with discontinuous Fe-rich spinels on the outer surface and a transition layer consisting of Cr spinels and γ'-Ni3Al phases randomly distributed under the oxide layer. Oxidation resistance was improved by accelerating diffusion through refined grain boundaries after the addition of 0.6 wt.% Nb. However, the corrosion resistance decreased significantly at higher Nb content due to the formation of continuous thick outer Fe-rich nodules on the surface and an internal oxide zone, and Fe2(Mo, Nb) laves phases were also detected, which prevented the outward diffusion of Al ions and promoted the formation of cracks within the oxide layer, resulting in unfavorable effects on oxidation. After exposure at 500 °C, fewer spinels and thinner oxide scales were found. The specific mechanism was discussed.
RESUMO
Cr-coated Zr alloys are widely considered the most promising accident-tolerant fuel (ATF) cladding materials for engineering applications in the near term. In this work, Cr coatings were prepared on the surfaces of 1400 mm long N36 cladding tubes using an industrial multiple arc source system. Orthogonal analyses were conducted to demonstrate the significance level of various process parameters influencing the characteristics of coatings (surface roughness, defects, crystal orientation, grain structure, etc.). The results show that the arc current mainly affects the coating deposition rate and the droplet particles on the surface or inside the coatings; however, the crystal preferred orientation and grain structure are more significantly influenced by the gas pressure and negative bias voltage, respectively. Then, the underlying mechanisms are carefully discussed. At last, a set of systemic methods to control the quality and microstructures of Cr coatings are summarized.