Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38842794

RESUMO

Organic small molecules are proven to be capable of passivating the bulk/interfacial defects in inorganic perovskite solar cells. Considering the burdensome situation to screen the functional small molecules, we employ a modified machine learning (ML) strategy to guide screening suitable small molecules toward efficient solar cells through three modified ML algorithms to construct the prediction model: (i) random forest algorithm (RF), (ii) support vector machine algorithm (SVR), and (iii) XGBoost. Among them, the XGBoost algorithm displays a better overall predictive performance, whereby the R2 index reaches 0.939. Accordingly, eight small molecules are selected to modify the interface of perovskite films, and both the theoretical and experimental results certify that the difluorobenzylamine with additional fluorine atoms has a better interface modification effect among the small molecules containing functional groups, e.g., the benzene ring and amino group. The high accuracy of the modified machine learning model enables us to simplify the small-molecule screening process and form an important step for ongoing developments in perovskite solar cells and other optoelectronic devices.

2.
Small ; : e2401333, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602227

RESUMO

Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

3.
Adv Mater ; 36(19): e2312797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38288643

RESUMO

The integration of graphene and metal-organic frameworks (MOFs) has numerous implications across various domains, but fabricating such assemblies is often complicated and time-consuming. Herein, a one-step preparation of graphene-MOF assembly is presented by directly impregnating vertical graphene (VG) arrays into the zeolitic imidazolate framework (ZIF) precursors under ambient conditions. This approach can effectively assemble multiple ZIFs, including ZIF-7, ZIF-8, and ZIF-67, resulting in their uniform dispersion on the VG with adjustable sizes and shapes. Hydrogen defects on the VG surface are critical in inducing such high-efficiency ZIF assembly, acting as the reactive sites to interact with the ZIF precursors and facilitate their crystallisation. The versatility of VG-ZIF-67 assembly is further demonstrated by exploring the process of MOF amorphization. Surprisingly, this process leads to an amorphous thin-film coating formed on VG (named VG-IL-amZIF-67), which preserves the short-range molecular bonds of crystalline ZIF-67 while sacrificing the long-range order. Such a unique film-on-graphene architecture maintains the essential characteristics and functionalities of ZIF-67 within a disordered arrangement, making it well-suited for electrocatalysis. In electrochemical oxygen reduction, VG-IL-amZIF-67 exhibits exceptional activity, selectivity, and stability to produce H2O2 in acid media.

4.
Microsyst Nanoeng ; 10: 11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38261871

RESUMO

This paper presents a high-performance MEMS accelerometer with a DC/AC electrostatic stiffness tuning capability based on double-sided parallel plates (DSPPs). DC and AC electrostatic tuning enable the adjustment of the effective stiffness and the calibration of the geometric offset of the proof mass, respectively. A dynamical model of the proposed accelerometer was developed considering both DC/AC electrostatic tuning and the temperature effect. Based on the dynamical model, a self-centering closed loop is proposed for pulling the reference position of the force-to-rebalance (FTR) to the geometric center of DSPP. The self-centering accelerometer operates at the optimal reference position by eliminating the temperature drift of the readout circuit and nulling the net electrostatic tuning forces. The stiffness closed-loop is also incorporated to prevent the pull-in instability of the tuned low-stiffness accelerometer under a dramatic temperature variation. Real-time adjustments of the reference position and the DC tuning voltage are utilized to compensate for the residue temperature drift of the proposed accelerometer. As a result, a novel controlling approach composed of a self-centering closed loop, stiffness-closed loop, and temperature drift compensation is achieved for the accelerometer, realizing a temperature drift coefficient (TDC) of approximately 7 µg/°C and an Allan bias instability of less than 1 µg.

5.
Int J Biol Macromol ; 260(Pt 1): 129465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38242394

RESUMO

Chitosan exhibits a wide source, non-toxic and biodegradable, and is the optimal functional raw material for preparing food packaging materials. However, the pure chitosan film has some disadvantages such as limited antibacterial activity and weak mechanical properties. In this study, sulfobetaines modified chitosan (CS-SBMA) was synthesized by grafting copolymerized betaine methacrylate sulfonate onto the chain of chitosan to improve the anti-bacterial adhesion and antibacterial properties of chitosan, aiming to develop antibacterial and anti-bacterial adhesion films based on CS-SBMA and polyvinyl alcohol (PVA) by the casting method. The structure of CS-SBMA was characterized by 1H NMR and FTIR. The appropriate proportion of CS-SBMA/PVA was determined to be 1/1 and 1/2, by characterizing the composite films with FTIR, XRD, SEM, mechanical, optical, and water resistance behaviors. In addition, CS-SBMA/PVA films showed excellent antibacterial, anti-bacterial adhesion and biofilm control function. The colonies number of E. coli and S. aureus on the surface of CS-SBMA/PVA 1/1 film decreased 94.15 % and 94.27 %, respectively, and 92.93 % of S. aureus and 94.87 % of E. coli colonies were inactivated within 60 min contact. These results indicate that CS-SBMA/PVA film exhibits potential antibacterial and anti-bacterial adhesion properties, which is suitable for food packaging materials.


Assuntos
Betaína/análogos & derivados , Quitosana , Quitosana/química , Álcool de Polivinil/química , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
6.
PLoS One ; 18(8): e0290978, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651412

RESUMO

Tuberculosis (TB), as a respiratory infectious disease, has damaged public health globally for decades, and mainland China has always been an area with high incidence of TB. Since the outbreak of COVID-19, it has seriously occupied medical resources and affected medical treatment of TB patients. Therefore, the authenticity and reliability of TB data during this period have also been questioned by many researchers. In response to this situation, this paper excludes the data from 2019 to the present, and collects the data of TB incidence in mainland China and the data of 11 influencing factors from 2014 to 2018. Using spatial autocorrelation methods and multiscale geographically weighted regression (MGWR) model to study the temporal and spatial distribution of TB incidence in mainland China and the influence of selected influencing factors on TB incidence. The experimental results show that the distribution of TB patients in mainland China shows spatial aggregation and spatial heterogeneity during this period. And the R2 and the adjusted R2 of MGWR model are 0.932 and 0.910, which are significantly better than OLS model (0.466, 0.429) and GWR model (0.836, 0.797). The fitting accuracy indicators MAE, MSE and MAPE of MGWR model reached 5.802075, 110.865107 and 0.088215 respectively, which also show that the overall fitting effect is significantly better than OLS model (19.987574, 869.181549, 0.314281) and GWR model (10.508819, 267.176741, 0.169292). Therefore, this model is based on real and reliable TB data, which provides decision-making references for the prevention and control of TB in mainland China and other countries.


Assuntos
COVID-19 , Tuberculose , Humanos , Regressão Espacial , Reprodutibilidade dos Testes , COVID-19/epidemiologia , Tuberculose/epidemiologia , China/epidemiologia
7.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607088

RESUMO

Chronic obstructive pulmonary disease (COPD) is a clinical syndrome characterized by persistent and irreversible airflow limitation and chronic respiratory symptoms. It has a wide spectrum of complications, and sleep disorders, as part of it, are common in severe cases, especially in elderly patients. Long-term lack of sleep may lead to the aggravation of the original disease, reducing patients' quality of life. Benzodiazepines are mainly used for symptomatic treatment of COPD combined with sleep disorders. However, such drugs have the side effect of respiratory central inhibition and could probably aggravate hypoxia symptoms. Auricular acupuncture is a special method of treating physical and psychosomatic dysfunctions by stimulating specific points in the ear. This article explains the specific methods of clinical operation of auricular acupuncture in detail, including assessment of patient eligibility, medical devices used, acupuncture points, course of treatment, post-treatment care, responses to emergencies, etc. The Pittsburgh sleep quality index (PSQI) and chronic obstructive pulmonary disease assessment scale (CAT) were used as the observational index of this method. So far, clinical reports have proved that auricular acupuncture has a definite curative effect in the treatment of COPD combined with sleep disorders, and its advantages of simple operation, few adverse reactions are worthy of further study and promotion, which provide a reference for the clinical treatment of such diseases.


Assuntos
Acupuntura Auricular , Doença Pulmonar Obstrutiva Crônica , Transtornos do Sono-Vigília , Humanos , Medicina Tradicional Chinesa , Qualidade de Vida , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/terapia , Transtornos do Sono-Vigília/etiologia , Transtornos do Sono-Vigília/terapia
8.
Cell Death Discov ; 9(1): 227, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407577

RESUMO

Food digestion requires the cooperation of different digestive organs. The differentiation of digestive organs is crucial for larvae to start feeding. Therefore, during digestive organogenesis, cell identity and the tissue morphogenesis must be tightly coordinated but how this is accomplished is poorly understood. Here, we demonstrate that WD repeat domain 5 (Wdr5)-mediated H3K4 tri-methylation (H3K4me3) coordinately regulates cell differentiation, proliferation and apoptosis in zebrafish organogenesis of three major digestive organs including intestine, liver, and exocrine pancreas. During zebrafish digestive organogenesis, some of cells in these organ primordia usually undergo differentiation without apoptotic activity and gradually reduce their proliferation capacity. In contrast, cells in the three digestive organs of wdr5-/- mutant embryos retain progenitor-like status with high proliferation rates, and undergo apoptosis. Wdr5 is a core member of COMPASS complex to implement H3K4me3 and its expression is enriched in digestive organs from 2 days post-fertilization (dpf). Further analysis reveals that lack of differentiation gene expression is due to significant decreases of H3K4me3 around the transcriptional start sites of these genes; this histone modification also reduces the proliferation capacity in differentiated cells by increasing the expression of apc to promote the degradation of ß-Catenin; in addition, H3K4me3 promotes the expression of anti-apoptotic genes such as xiap-like, which modulates p53 activity to guarantee differentiated cell survival. Thus, our findings have discovered a common molecular mechanism for cell fate determination in different digestive organs during organogenesis, and also provided insights to understand mechanistic basis of human diseases in these digestive organs.

10.
ACS Appl Mater Interfaces ; 15(24): 29308-29320, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37279402

RESUMO

Ni-rich layered ternary cathodes (i.e., LiNixCoyMzO2, M = Mn or Al, x + y + z = 1 and x ≥ 0.8) are promising candidates for the power supply of portable electronic devices and electric vehicles. However, the relatively high content of Ni4+ in the charged state shortens their lifespan due to inevitable capacity and voltage deteriorations during cycling. Therefore, the dilemma between high output energy and long cycle life needs to be addressed to facilitate more widespread commercialization of Ni-rich cathodes in modern lithium-ion batteries (LIBs). This work presents a facile surface modification approach with defect-rich strontium titanate (SrTiO3-x) coating on a typical Ni-rich cathode: LiNi0.8Co0.15Al0.05O2 (NCA). The defect-rich SrTiO3-x-modified NCA exhibits enhanced electrochemical performance compared to its pristine counterpart. In particular, the optimized sample delivers a high discharge capacity of ∼170 mA h/g after 200 cycles under 1C with capacity retention over 81.1%. The postmortem analysis provides new insight into the improved electrochemical properties which are ascribed to the SrTiO3-x coating layer. This layer appears to not only alleviate the internal resistance growth, from uncontrollable cathode-electrolyte interface evolution, but also acts as a lithium diffusion channel during prolonged cycling. Therefore, this work offers a feasible strategy to improve the electrochemical performance of layered cathodes with high nickel content for next-generation LIBs.

11.
Cell Discov ; 9(1): 63, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369707

RESUMO

Genetic compensation responses (GCRs) can be induced by deleterious mutations in living organisms in order to maintain genetic robustness. One type of GCRs, homology-dependent GCR (HDGCR), involves transcriptional activation of one or more homologous genes related to the mutated gene. In zebrafish, ~80% of the genetic mutants produced by gene editing technology failed to show obvious phenotypes. The HDGCR has been proposed to be one of the main reasons for this phenomenon. It is triggered by mutant mRNA bearing a premature termination codon and has been suggested to depend on components of both the nonsense mRNA-mediated degradation (NMD) pathway and the complex of proteins associated with Set1 (COMPASS). However, exactly which specific NMD factor is required for HDGCR remains disputed. Here, zebrafish leg1 deleterious mutants are adopted as a model to distinguish the role of the NMD factors Upf1 and Upf3a in HDGCR. Four single mutant lines and three double mutant lines were produced. The RNA-seq data from 71 samples and the ULI-NChIP-seq data from 8 samples were then analyzed to study the HDGCR in leg1 mutants. Our results provide strong evidence that Upf3a, but not Upf1, is essential for the HDGCR induced by nonsense mutations in leg1 genes where H3K4me3 enrichment appears not to be a prerequisite. We also show that Upf3a is responsible for correcting the expression of hundreds of genes that would otherwise be dysregulated in the leg1 deleterious mutant.

12.
Nanomaterials (Basel) ; 13(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049286

RESUMO

Hydrotalcite, first found in natural ores, has important applications in supercapacitors. NiCoAl-LDH, as a hydrotalcite-like compound with good crystallinity, is commonly synthesized by a hydrothermal method. Al3+ plays an important role in the crystallization of hydrotalcite and can provide stable trivalent cations, which is conducive to the formation of hydrotalcite. However, aluminum and its hydroxides are unstable in a strong alkaline electrolyte; therefore, a secondary alkali treatment is proposed in this work to produce cation vacancies. The hydrophilicity of the NiCoAl-OH surface with cation vacancy has been greatly improved, which is conducive to the wetting and infiltration of electrolyte in water-based supercapacitors. At the same time, cation vacancies generate a large number of defects as active sites for energy storage. As a result, the specific capacity of the NiCoAl-OH electrode after 10,000 cycles can be maintained at 94.1%, which is much better than the NiCoAl-LDH material of 74%.

13.
ACS Nano ; 17(3): 2387-2398, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36727675

RESUMO

Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.

14.
Opt Express ; 31(26): 42795-42806, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178390

RESUMO

Photonic integrated circuits (PICs) based on gallium nitride (GaN) platforms have been widely explored for various applications at C-band (1530 nm∼1565 nm) and visible light wavelength range. However, for O-band (1260 nm∼1360 nm) commonly used in short reach/cost sensitive markets, GaN-based PICs still have not been fully investigated. In this article, a microring resonator with an intrinsic Q-factor of ∼2.67 × 104 and an extinction ratio (ER) of 35.1 dB at 1319.9 nm and 1332.1 nm, is monolithically integrated with a transverse electric-polarized focusing grating coupler and a ridge waveguide on a GaN-on-sapphire platform. This shows a great potential to further exploit the optical properties of GaN materials and integrate GaN-based PICs with the mature GaN active electronic and optoelectronic devices to form a greater platform of optoelectronic-electronic integrated circuits (OEICs) for data-center and telecom applications.

15.
Front Pharmacol ; 13: 1003697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408213

RESUMO

Background: No specific drug for COVID-19 has been found, and many studies have found that different degrees of liver injury often occurred after infection with COVID-19. Glycyrrhizic acid preparation (GAP) has been frequently used clinically, often combined with conventional treatments such as antiviral therapy, to improve the prognosis of COVID-19 and patients' liver function. Aims: To critically review and analyze clinical evidence on the efficacy and safety of GAP in the treatment of COVID-19 alone and COVID-19 with comorbid liver injury. Methods: A systematic literature review was performed following a sensitive searching strategy that examines all articles published in "WHO COVID-19 Research Database," "Cochrane Library," "VIP," "CNKI," "Wanfang," and "CBM" from 2020 to July 2022. Articles were evaluated by peer reviewers and used Joanna Briggs Institute (JBI) critical appraisal tools to complete the assessment of the risk of bias. Results: Ten clinical studies were finally included, involving 598 patients with COVID-19, of whom 189 were confirmed to be with comorbid liver injury. The main GAPs used are diammonium glycyrrhizinate and magnesium isoglycyrrhizinate, which have shown efficacy in improving liver function, inhibiting inflammation, and enhancing immunity. We are still seeking more related research. Conclusion: Glycyrrhizic acid preparations (mainly diammonium glycyrrhizinate and magnesium isoglycyrrhizinate) have a considerable clinical effect on improving liver function in patients with COVID-19 alone or with comorbid liver injury. Further studies on the use of GAP in the treatment of COVID-19 with comorbid liver injury and its mechanism are still needed. Systematic Review Registration: [www.crd.york.ac.uk/prospero], identifier [CRD42021234647].

16.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35888871

RESUMO

With the increasing demand for legged robots, the importance of the joint drive is increasing. The dynamic performance of the inner-most torque/current control loop conditions the capabilities of the whole joint system. In this paper, a direct torque control based on a prediction model is proposed. The motor torque is estimated by considering calculation and measurement delay; error estimation and torque tracking error are observed and compensated. The control algorithm was implemented on a Field Programmable Gate Array (FPGA) board to apply the capabilities of concurrency calculation of the FPGA. The effectiveness of the proposed control algorithm was experimentally verified. Compared with the commonly used Field Oriented Control (FOC) current controller, the presented controller can not only improve the dynamic performance of the motor but also reduce the average switching times of the inverter.

17.
Nanomaterials (Basel) ; 12(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889618

RESUMO

Industrial wastewater containing large amounts of organic pollutants is a severe threat to the environment and human health. Thus, the rapid detection and removal of these pollutants from wastewater are essential to protect public health and the ecological environment. In this study, a multifunctional and reusable surface-enhanced Raman scattering (SERS) substrate by growing Ag nanoparticles (NPs) on ZnO nanorods (NRs) was produced for detecting and degrading Rhodamine B (RhB) dye. The ZnO/Ag substrate exhibited excellent sensitivity, and the limit of detection (LOD) for RhB was as low as 10-11 M. Furthermore, the SERS substrate could efficiently degrade RhB, with a degradation efficiency of nearly 100% within 150 min. Moreover, it retained good SERS activity after multiple repeated uses. The interaction between Ag NPs, ZnO, and RhB was further investigated, and the mechanism of SERS and photocatalysis was proposed. The as-prepared ZnO/Ag composite structure could be highly applicable as a multifunctional SERS substrate for the rapid detection and photocatalytic degradation of trace amounts of organic pollutants in water.

18.
ACS Appl Mater Interfaces ; 14(30): 34686-34696, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876499

RESUMO

Structural instability is a major obstacle to realizing the high performance of a MnO2-based pseudocapacitor material. Understanding its structure transformation in the process of electrochemical reaction, therefore, plays an important role in the efficient enhancement of rate capacity and stability. Herein, a stable MnO2@rGO core-shell nanosphere is first synthesized by a liquid-liquid interface deposition further combined with the electrostatic self-assembly method. The structural transformation process of the MnO2@rGO electrode is monitored by ex situ Raman and X-ray diffraction spectroscopy during the charging-discharging process. It is found in the first discharging process that layered-MnO2 transforms into the spinel-Mn3O4 phase with K+ ion intercalation. From the second charging, the spinel-Mn3O4 phase is gradually adjusted to a more stable λ-MnO2 with a three-dimensional tunnel structure, finally realizing the reversible intercalation/deintercalation of K+ ions in the λ-MnO2 tunnel structure during subsequent cycling, which can be attributed to the presence of oxygen vacancies formed by the lengthening of the Mn-O bond and losing oxygen in the MnO6 octahedral unit with K+ ion intercalation/deintercalation. Meanwhile, the MnO2@rGO electrode demonstrates a high specific capacitance of 378 F g-1 at 1 A g-1 and excellent cycling stability with a capacitance retention of up to 89.5% after 10 000 cycles at 10 A g-1. Furthermore, the assembled symmetric micro-supercapacitor delivers a high areal energy density of 1.01 µWh cm-2, superior cycling stability with no significant capacity decay after 8700 cycles, and a capacity retention rate of almost 100% after 2000 bending cycles, showing great mechanical flexibility and practicability.

19.
Nat Commun ; 13(1): 2430, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508501

RESUMO

Platinum is the most efficient catalyst for hydrogen evolution reaction in acidic conditions, but its widespread use has been impeded by scarcity and high cost. Herein, Pt atomic clusters (Pt ACs) containing Pt-O-Pt units were prepared using Co/N co-doped carbon (CoNC) as support. Pt ACs are anchored to single Co atoms on CoNC by forming strong interactions. Pt-ACs/CoNC exhibits only 24 mV overpotential at 10 mA cm-2 and a high mass activity of 28.6 A mg-1 at 50 mV, which is more than 6 times higher than commercial Pt/C with any Pt loadings. Spectroscopic measurements and computational modeling reveal the enhanced hydrogen generation activity attributes to the charge redistribution between Pt and O atoms in Pt-O-Pt units, making Pt atoms the main active sites and O linkers the assistants, thus optimizing the proton adsorption and hydrogen desorption. This work opens an avenue to fabricate noble-metal-based ACs stabilized by single-atom catalysts with desired properties for electrocatalysis.

20.
J Colloid Interface Sci ; 617: 73-83, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35259513

RESUMO

Because of different atomic arrangements and/or different exposed atoms on different surfaces of crystalline particles, different physical and chemical properties can be resulted and exhibited. In this work, we prepared BiOCl with {110} crystal facet by introducing urea as the structure-directing agent, and constructed oxygen vacancies (OVs) in BiOCl (110) to form BiOCl (110)-OV. Control of exposure surface can improve photocatalyst activity and the defect level caused by OVs can improve charge separation and light absorption, thereby further enhancing the production of free radicals and the activation of pollutants. Due to the synergistic effect of the hierarchical microsphere structure of BiOCl and OVs, the degradation rate of tetracycline hydrochloride (20 mg/L) in the presence of BiOCl (110)-OV can reach 95.1% after 15 min of the simulated sunlight illumination. This research provides novel ideas for the design and development of photocatalyst with hierarchical structure and oxygen vacancy defects.


Assuntos
Bismuto , Oxigênio , Bismuto/química , Catálise , Microesferas , Fotólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA