Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Facial Plast Surg Aesthet Med ; 24(5): 391-396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34672779

RESUMO

Importance: Coleman fat, nanofat, and stromal vascular fraction-gel (SVF-gel) are three widely used fat derivatives. However, their rheological properties and structure remain unknown. Objectives: To disclose the rheological properties and structure of three different fat derivatives. Design, Settings, and Participants: Fat tissues obtained from eight different donors were processed into three separate groups: Coleman fat, nanofat, and SVF-gel (n = 8); their viscoelastic properties and structure were determined. Intervention: Oscillation measurements were performed in the context of serrated 25-mm parallel-plate geometry with a 1.2-mm gap at 25°C. In addition, fat samples were fixed using a patented protocol and observed under scanning electron microscopy. Main Outcomes and Measures: Comparison of the viscoelastic properties, microstructure, and particle size. Results: At 0.77 Hz, the elastic modulus of SVF-gel, Coleman fat, and nanofat was 201.6 ± 0.74, 69.94 ± 15.61, and 34.89 ± 3.484 Pa, respectively; their viscosity was 44.06 ± 3.038, 15.37 ± 2.0380, and 7.516 ± 0.7250 mPa, respectively. The particle size of SVF-gel, Coleman fat, and nanofat was 106.0 ± 4.796, 86.93 ± 3.597, and 12.61 ± 7.603 µm, respectively. Conclusion and Relevance: Mechanical processing may impact graft efficacy. The characterization of the rheological properties and structure of different fat derivatives in this study may help surgeons select the better type of tissue for a given intervention; however, further studies are still required.


Assuntos
Tecido Adiposo , Fração Vascular Estromal , Tecido Adiposo/transplante , Humanos
2.
J Biotechnol ; 332: 54-60, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33785372

RESUMO

Nanocellulose has many promising applications such as a green ingredient for Pickering emulsion. Traditional strategies to produce nanocellulose, which are acid or enzymatic hydrolysis and mechanical methods on natural complicated cellulose, are hard to control and can result in significant pollutants during the processes. Herein, we demonstrated a facile and sustainable method for the biocatalytic production of insoluble synthetic crystalline cellulose nanoribbon (CCNR) from cheap maltodextrin by coupling α-glucan phosphorylase (αGP) and cellodextrin phosphorylase (CDP) using cellobiose as a primer. And by optimizing the combination of different αGP and CDP, it turned out that the optimal enzyme combination is αGP from Thermotoga maritime and CDP from Clostridium thermocellum, in which CDP was attached to a family 9 cellulose-binding module. The product yield and degree of polymerization (DP) of insoluble synthetic CCNR was affected by the primer concentration at a fixed concentration of maltodextrin. After optimization of reaction conditions, the highest product yield of insoluble synthetic CCNR was 44.92 % and the highest DP of the insoluble synthetic CCNR was 24 from 50 g 1-1 maltodextrin. This insoluble synthetic CCNR can be used as a Pickering emulsions stabilizer, showing excellent emulsifiability. This study provides a promising alternative for cost-efficient production of insoluble synthetic CCNR which was used as a green emulsion stabilizer.


Assuntos
Celulose , Nanotubos de Carbono , Emulsões , Fosforilases , Polissacarídeos
3.
Carbohydr Polym ; 254: 117445, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357915

RESUMO

Nanocellulose are promising Pickering emulsion stabilizers for being sustainable and non-toxic. In this work, semicrystalline cellulose oligomers (SCCO), which were synthesized from maltodextrin using cellobiose as primer by in vitro enzymatic biosystem, were exploited as stabilizers for oil-in-water Pickering emulsions. At first, the morphology, structure, thermal and rheological properties of SCCO suspensions were characterized, showing that SCCO had a sheet morphology and typical cellulose-Ⅱ structure with 56 % crystallinity. Then the kinetic stabilities of emulsions containing various amounts of SCCO were evaluated against external stress such as pH, ionic strength, and temperature. Noting that SCCO-Pickering emulsions exhibited excellent stabilities against changes in centrifugation, pH, ionic strengths, and temperatures, and it was also kinetically stable for up to 6 months. Both SCCO suspensions and their emulsions exhibited gel-like structures and shear-thinning behaviors. These results demonstrated great potential of SCCO to be applied as nanocellulosic emulsifiers in food, cosmetic and pharmaceutical industries.


Assuntos
Celobiose/química , Celulose/química , Emulsificantes/química , Polissacarídeos/química , Celulose/ultraestrutura , Cosméticos/química , Cristalização , Emulsões , Tecnologia de Alimentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Temperatura , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA