Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(1): 163-173, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38087461

RESUMO

We report the synthesis of a new set of amphiphilic saddle-shaped heptagon-containing polycyclic aromatic hydrocarbons (PAHs) functionalized with tetraethylene glycol chains and their self-assembly into large two-dimensional (2D) polymers. An in-depth analysis of the self-assembly mechanism at the air/water interface has been carried out, and the proposed arrangement models are in good agreement with the molecular dynamics simulations. Quite remarkably, the number and disposition of the tetraethylene glycol chains significantly influence the disposition of the PAHs at the interface and conditionate their packing under pressure. For the three compounds studied, we observed three different behaviors in which the aromatic core is parallel, perpendicular, and tilted with respect to the water surface. We also show that these curved PAHs are able to self-assemble in solution into remarkably large sheets of up to 150 µm2. These results show the relationship, within a family of curved nanographenes, between the monomer configuration and their self-assembly capacity in air/water interfaces and organic-water mixtures.

2.
ACS Appl Mater Interfaces ; 15(27): 32597-32609, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37390355

RESUMO

The development of bio-MOFs or MOF biocomposites through the combination of MOFs with biopolymers offers the possibility of expanding the potential applications of MOFs, making use of more environmentally benign processes and reagents and giving rise to a new generation of greener and more bio-oriented composite materials. Now, with the increasing use of MOFs for biotechnological applications, the development of new protocols and materials to obtain novel bio-MOFs compatible with biomedical or biotechnological uses is needed. Herein, and as a proof of concept, we have explored the possibility of using short-peptide supramolecular hydrogels as media to promote the growth of MOF particles, giving rise to a new family of bio-MOFs. Short-peptide supramolecular hydrogels are very versatile materials that have shown excellent in vitro and in vivo biomedical applications such as tissue engineering and drug delivery vehicles, among others. These peptides self-assemble by noncovalent interactions, and, as such, these hydrogels are easily reversible, being more biocompatible and biodegradable. These peptides can self-assemble by a multitude of stimuli, such as changes in pH, temperature, solvent, adding salts, enzymatic activity, and so forth. In this work, we have taken advantage of this ability to promote peptide self-assembly with some of the components required to form MOF particles, giving rise to more homogeneous and well-integrated composite materials. Hydrogel formation has been triggered using Zn2+ salts, required to form ZIF-8, and formic acid, required to form MOF-808. Two different protocols for the in situ MOF growth have been developed. Finally, the MOF-808 composite hydrogel has been tested for the decontamination of water polluted with phosphate ions as well as for the catalytic degradation of toxic organophosphate methyl paraoxon in an unbuffered solution.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Hidrogéis/química , Sais , Peptídeos , Sistemas de Liberação de Medicamentos
3.
ACS Nano ; 16(10): 16941-16953, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36219724

RESUMO

Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality. The resulting supramolecular chirality of these materials has been explored to modulate protein and cell interactions. Recently, significant attention has been focused on the development of chiral materials with potential spintronic applications, as it has been shown that transport of charge carriers through a chiral environment polarizes the carrier spins. This effect, named chirality-induced spin selectivity or CISS, has been studied in different chiral organic molecules and materials, as well as carbon nanotubes functionalized with chiral molecules. Nevertheless, this effect has been primarily explored in homochiral systems in which the chirality of the medium, and hence the resulting spin polarization, is defined by the chirality of the molecule, with limited options for tunability. Herein, we have developed heterochiral carbon-nanotube-short-peptide materials made by the combination of two different chiral sources: that is, homochiral peptides (l/d) + glucono-δ-lactone. We show that the presence of a small amount of glucono-δ-lactone with fixed chirality can alter the supramolecular chirality of the medium, thereby modulating the sign of the spin signal from "up" to "down" and vice versa. In addition, small amounts of glucono-δ-lactone can even induce nonzero spin polarization in an otherwise achiral and spin-inactive peptide-nanotube composite. Such "chiral doping" strategies could allow the development of complementary CISS-based spintronic devices and circuits on a single material platform.


Assuntos
Nanotubos de Carbono , Nanotubos de Peptídeos , Peptídeos , Solventes/química , Materiais Biocompatíveis
4.
ACS Nano ; 15(12): 20056-20066, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34870421

RESUMO

Molecular functionalization of CNTs is a routine procedure in the field of nanotechnology. However, whether and how these molecules affect the spin polarization of the charge carriers in CNTs are largely unknown. In this work we demonstrate that spin polarization can indeed be induced in two-dimensional (2D) CNT networks by "certain" molecules and the spin signal routinely survives length scales significantly exceeding 1 µm. This result effectively connects the area of molecular spintronics with that of carbon-based 2D nanoelectronics. By using the versatility of peptide chemistry, we further demonstrate how spin polarization depends on molecular structural features such as chirality as well as molecule-nanotube interactions. A chirality-independent effect was detected in addition to the more common chirality-dependent effect, and the overall spin signal was found to be a combination of both. Finally, the magnetic field dependence of the spin signals has been explored, and the "chirality-dependent" signal has been found to exist only in certain field angles.

5.
ACS Appl Mater Interfaces ; 13(42): 49692-49704, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34645258

RESUMO

The inclusion of magnetic nanoparticles (MNP) in a hydrogel matrix to produce magnetic hydrogels has broadened the scope of these materials in biomedical research. Embedded MNP offer the possibility to modulate the physical properties of the hydrogel remotely and on demand by applying an external magnetic field. Moreover, they enable permanent changes in the mechanical properties of the hydrogel, as well as alterations in the micro- and macroporosity of its three-dimensional (3D) structure, with the associated potential to induce anisotropy. In this work, the behavior of biocompatible and biodegradable hydrogels made with Fmoc-diphenylalanine (Fmoc-FF) (Fmoc = fluorenylmethoxycarbonyl) and Fmoc-arginine-glycine-aspartic acid (Fmoc-RGD) short peptides to which MNP were incorporated was studied in detail with physicochemical, mechanical, and biological methods. The resulting hybrid hydrogels showed enhance mechanical properties and withstood injection without phase disruption. In mice, the hydrogels showed faster and improved self-healing properties compared to their nonmagnetic counterparts. Thanks to these superior physical properties and stability during culture, they can be used as 3D scaffolds for cell growth. Additionally, magnetic short-peptide hydrogels showed good biocompatibility and the absence of toxicity, which together with their enhanced mechanical stability and excellent injectability make them ideal biomaterials for in vivo biomedical applications with minimally invasive surgery. This study presents a new approach to improving the physical and mechanical properties of supramolecular hydrogels by incorporating MNP, which confer structural reinforcement and stability, remote actuation by magnetic fields, and better injectability. Our approach is a potential catalyst for expanding the biomedical applications of supramolecular short-peptide hydrogels.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/farmacologia , Nanopartículas de Magnetita/química , Peptídeos/farmacologia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Proliferação de Células/efeitos dos fármacos , Hidrogéis/administração & dosagem , Hidrogéis/química , Injeções Subcutâneas , Substâncias Macromoleculares/administração & dosagem , Substâncias Macromoleculares/química , Substâncias Macromoleculares/farmacologia , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Osteoblastos/efeitos dos fármacos , Peptídeos/administração & dosagem , Peptídeos/química
6.
ACS Appl Mater Interfaces ; 13(10): 11672-11682, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661596

RESUMO

Protein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their in vivo half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the in vivo pharmacological activity of proteins. Nevertheless, strategies to improve the shelf-life of protein pharmaceuticals have been less explored, which has challenged the preservation of their activity. Herein, we present a methodology that simultaneously increases the stability of proteins and modulates the release profile, and implement it with human insulin as a proof of concept. Two novel thermally stable insulin composite crystal formulations intended for the therapeutic treatment of diabetes are reported. These composite crystals have been obtained by crystallizing insulin in agarose and fluorenylmethoxycarbonyl-dialanine (Fmoc-AA) hydrogels. This process affords composite crystals, in which hydrogel fibers are occluded. The insulin in both crystalline formulations remains unaltered at 50 °C for 7 days. Differential scanning calorimetry, high-performance liquid chromatography, mass spectrometry, and in vivo studies have shown that insulin does not degrade after the heat treatment. The nature of the hydrogel modifies the physicochemical properties of the crystals. Crystals grown in Fmoc-AA hydrogel are more stable and have a slower dissolution rate than crystals grown in agarose. This methodology paves the way for the development of more stable protein pharmaceuticals overcoming some of the existing limitations.


Assuntos
Hidrogéis/química , Hipoglicemiantes/química , Insulina/química , Animais , Cristalização/métodos , Liberação Controlada de Fármacos , Humanos , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Masculino , Peptídeos/química , Estabilidade Proteica , Ratos Wistar
7.
Philos Trans A Math Phys Eng Sci ; 377(2143): 20180217, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-30827221

RESUMO

Anisotropy is an intrinsic feature of most of the human tissues (e.g. muscle, skin or cartilage). Because of this, there has been an intense effort in the search of methods for the induction of permanent anisotropy in hydrogels intended for biomedical applications. The dispersion of magnetic particles or beads in the hydrogel precursor solution prior to cross-linking, in combination with applied magnetic fields, which gives rise to columnar structures, is one of the most recently proposed approaches for this goal. We have gone even further and, in this paper, we show that it is possible to use magnetic particles as actuators for the alignment of the polymer chains in order to obtain anisotropic hydrogels. Furthermore, we characterize the microstructural arrangement and mechanical properties of the resulting hydrogels. This article is part of a theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA