Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Avian Pathol ; 52(3): 176-184, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079321

RESUMO

Highly pathogenic avian influenza (HPAI) viruses from the Goose/Guangdong/96-lineage emerged in Southeast Asia and subsequently spread to the Middle East, Africa and Europe, infecting a range of birds and mammals (including humans). This lineage of H5 viruses can efficiently establish itself in wild birds after circulating among gallinaceous poultry, facilitating reassortment with low pathogenic avian influenza (LPAI) virus strains, enhancing dispersal over long distances and contributing to endemicity. The detection of HPAI H5N8 virus (clade 2.3.4.4B) in 2017 in the Mpumalanga Province of South Africa marked the beginning of an epidemic that devastated the South African poultry industry. Vaccines were tested to assess protection against the circulating field strain. This article describes the performance of a reverse genetics inactivated H5N1 vaccine from Zoetis (RG-H5N1), with 96.1% identity to the circulating HPAI H5N8 virus. Two locally formulated benchmarks, one containing an H5N8 antigen homologous to the field strain (Benchmark-H5N8), the other containing a heterologous (87.6% identity to field virus) LPAI H5N1 antigen (Benchmark-H5N1), were included for comparison. Efficacy was assessed in specific pathogen-free (SPF) chickens using a prime-boost approach (injections at days 21 and 45), followed by a challenge with a South African HPAI H5N8 isolate (70 days of age). The Zoetis RG-H5N1 vaccine and Benchmark-H5N8 outperformed the Benchmark-H5N1 in terms of humoral response against the H5N8 antigen and reduction of shedding. The Zoetis RG-H5N1 vaccine protected 100% of the chickens against clinical disease and death. This study confirmed that antigenically matched inactivated vaccines could induce robust protection and markedly reduce viral shedding.RESEARCH HIGHLIGHTSConditionally licensed vaccine protected against HPAI H5N8 (clade 2.3.4.4B).Complete protection against clinical disease and mortality.Drastic reduction of viral shedding after challenge.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Aviária , Humanos , Animais , Galinhas , Aves Domésticas , Mamíferos
2.
J Avian Med Surg ; 34(3): 229-236, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33099975

RESUMO

The southern ground-hornbill (Bucorvus leadbeateri; hereafter SGH) is endangered in South Africa, Namibia, and Swaziland. Through a conservation program established in South Africa by the Mabula Ground Hornbill Project, wild populations are being re-established by the reintroduction of captive-reared birds. The SGH is susceptible to infection with avian avulavirus 1, which causes Newcastle disease (ND). Four different vaccines to protect against ND were administered through various vaccination schedules and evaluated by serologic monitoring to assess the efficiency and safety of various combinations of vaccines (live versus inactivated/killed), vaccine strains (Ulster strain, live; Avivac Cellimune, live; VG/GA strain, live; and Avivac Struvac, killed), and administration routes (intraocular versus subcutaneous versus intramuscular injection versus oral). We vaccinated 75 individuals and evaluated antibody titers in 53 individuals (24 juveniles, 13 subadults, and 16 adult SGH; 26 males and 27 females) over a period of 9 years. Antibody titers to avian avulavirus 1 in sera were monitored by a hemagglutination inhibition test. Protective titers were generated with 3/6 vaccine regimes tested in the SGH. The highest vaccine titers were established in birds vaccinated with the Ulster strain in the conjunctiva and followed with an intramuscular Struvac injection (mean log2 titer 8.6 ± 2.6) booster. Our aim was 1) to assess whether optimal vaccination protocols could be developed and 2) to then be able, by oral administration, to remove the need to recapture free-roaming, reintroduced birds to administer the initial vaccine or booster, thus remove the threat or mortality associated with ND to this endangered avian species in both captive birds and birds released back into the wild.


Assuntos
Anticorpos Antivirais/sangue , Doença de Newcastle/prevenção & controle , Vacinas Virais/imunologia , Animais , Aves , Feminino , Imunização Secundária/veterinária , Masculino , Doença de Newcastle/epidemiologia , África do Sul/epidemiologia , Vacinação/veterinária
3.
Vaccine ; 38(45): 7108-7117, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32921506

RESUMO

African horse sickness virus (AHSV) is a virus species in the genus Orbivirus of the family Reoviridae causing African Horse Sickness (AHS) in equids with a mortality of about 95% in naïve horses. AHS causes serious losses in developing countries where horses play a central role in draft power and transportation. There are nine AHSV serotypes inducing no or low cross-neutralizing antibodies. AHSV is spread by biting Culicoides midges. AHS is endemic in sub-Saharan Africa, and a serious threat outside Africa, since Culicoides species in moderate climate conditions are spreading the closely related bluetongue virus. AHS outbreaks will be devastating for the equestrian industry in developed countries. Live-attenuated vaccines (LAVs) are licensed, marketed and in use in Africa. Their application is controversial with regard to safety issues. LAVs are not allowed in AHS-free countries. We here studied inactivated AHSV with different adjuvants in guinea pigs and horses. Subcutaneous and intramuscular vaccination were studied in horses. Local reactions were observed after prime and boost vaccination. In general, neutralizing antibodies (nAbs) titres were very low after prime vaccination, whereas boost vaccination resulted in high nAb titres for some adjuvants. Vaccinated horses were selected based on local reactions and nAb titres to study efficacy. Unfortunately, not all vaccinated horses survived virulent AHSV infection. Further, most survivors temporarily developed clinical signs and viremia. Further, the current prototype inactivated AHS vaccine is not suitable as emergency vaccine, because onset of protection is slow and requires boost vaccinations. On the other hand, inactivated AHS vaccine is completely safe with respect to virus spread, and incorporation of the DIVA principle based on NS3/NS3a serology and exploring a vaccine production platform for other serotypes is feasible. A superior adjuvant increasing the protective response without causing local reactions will be required to develop payable and acceptable inactivated AHS vaccines.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Vacinas Virais , África , Doença Equina Africana/prevenção & controle , Animais , Cobaias , Cavalos , Vacinas de Produtos Inativados
4.
J S Afr Vet Assoc ; 85(1): 1058, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25685902

RESUMO

Fowl adenovirus (FAdV) is a member of the genus Aviadenovirus and causes a number of economically important poultry diseases. One of these diseases, inclusion body hepatitis (IBH), has a worldwide distribution and is characterised by acute mortality (5% - 20%) in production chickens. The disease was first described in the United States of America in 1963 and has also been reported in Canada, the United Kingdom, Australia, France and Ireland, but until now, not in South Africa. Adenoviruses isolated from the first outbreak of IBH in South Africa were able to reproduce the disease in chicken embryo livers. The aim of the present study was to characterise the viruses and determine the pathogenicity of the FAdV strains responsible for the first reported case of IBH in South Africa. Polymerase chain reaction (PCR) amplification of the L1 loop region of the fowl adenovirus hexon gene using degenerate primer pair hexon A/B was used to identify the viruses that were isolated. Restriction fragment length polymorphism (RFLP) of the amplification products was used for the differentiation of 14 isolates of fowl adenovirus. Sequencing of the PCR products followed by amino acid comparison and phylogenetic analysis using the L1 loop region of the hexon protein was done to determine the identity of the isolates. Amino acid sequences of the hexon genes of all the South African isolates were compared with those of reference strains representing FAdV species. Amino acid comparison of 12 South Africa field isolates to FAdV reference strains revealed a high sequence identity (> 93.33%) with reference strains T8-A and 764. Two of the isolates had high sequence identity (93.40%) with reference strains P7-A, C2B and SR48. Phylogenetic analysis of the L1 loop region of the hexon protein of all 14 South African isolates was consistent with their RFLP clusters. The mortality rates of embryos challenged with 106 egg infective doses (EID50) FAdV 2 were 80% - 87% and mortality rates for embryos challenged with 105.95 (EID50) FAdV 8b were 65% - 80%.


Assuntos
Infecções por Adenoviridae/veterinária , Surtos de Doenças/veterinária , Adenovirus A das Aves/isolamento & purificação , Hepatite Viral Animal/virologia , Doenças das Aves Domésticas/virologia , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/virologia , Sequência de Aminoácidos , Animais , Embrião de Galinha , Adenovirus A das Aves/patogenicidade , Hepatite Viral Animal/epidemiologia , Hepatite Viral Animal/patologia , Corpos de Inclusão , Nefropatias/patologia , Nefropatias/veterinária , Filogenia , Doenças das Aves Domésticas/epidemiologia , África do Sul/epidemiologia
5.
J S Afr Vet Assoc ; 85(1): e1-5, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27476509

RESUMO

Inclusion body hepatitis is an acute disease of chickens ascribed to viruses of the genus Aviadenovirus and referred to as fowl adenovirus (FAdV). There are 12 FAdV types (FAdV1to FAdV8a and FAdV8b to FAdV11), classified into five species based on their genotype (designated FAdVA to FAdVE). A total of 218 000 chickens, 2-29 days of age, were affected over a 1-year period, all testing positive by microscopy, virus isolation and confirmation with polymerase chain reaction (PCR). Affected birds were depressed, lost body weight,were weak and had watery droppings. Pathological changes observed during necropsy indicated consistent changes in the liver, characterised by hepatomegaly, cholestasis and hepatitis. Lesions were also discernible in the spleen, kidney and gizzard wall and were characterised by splenomegaly, pinpoint haemorrhages, nephritis with haemorrhage,visceral gout and serosal ecchymosis of the gizzard wall. Histopathological lesions were most consistently observed in the liver but could also be seen in renal and splenic tissue. Virus isolation was achieved in embryonated eggs and most embryos revealed multifocalto diffuse hepatic necrosis, with a mixed cellular infiltrate of macrophages and heterophils(necro-granulomas), even in the absence of macroscopic pathology. Virus isolation results were verified by histopathology and PCR on embryonic material and further characterised by nucleotide sequence analysis. Two infectious bursal disease virus isolates were also made from the Klerksdorp flock. Nucleotide sequence analysis of the L1 hexon loop of all the FAdV isolates indicated homology (99%) with prototype strains P7-A for FAdV-2, as well as for FAdV-8b.


Assuntos
Infecções por Adenoviridae/veterinária , Aviadenovirus , Galinhas , Hepatite Viral Animal/epidemiologia , Doenças das Aves Domésticas/virologia , Infecções por Adenoviridae/virologia , Animais , Aviadenovirus/isolamento & purificação , Surtos de Doenças/veterinária , Corpos de Inclusão/virologia , Doenças das Aves Domésticas/epidemiologia , África do Sul
6.
J Virol ; 85(24): 12901-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21976656

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne human and veterinary pathogen causing large outbreaks of severe disease throughout Africa and the Arabian Peninsula. Safe and effective vaccines are critically needed, especially those that can be used in a targeted one-health approach to prevent both livestock and human disease. We report here on the safety, immunogenicity, and efficacy of the ΔNSs-ΔNSm recombinant RVFV (rRVFV) vaccine (which lacks the NSs and NSm virulence factors) in a total of 41 sheep, including 29 timed-pregnant ewes. This vaccine was proven safe and immunogenic for adult animals at doses ranging from 1.0 × 10(3) to 1.0 × 10(5) PFU administered subcutaneously (s.c.). Pregnant animals were vaccinated with 1.0 × 10(4) PFU s.c. at day 42 of gestation, when fetal sensitivity to RVFV vaccine-induced teratogenesis is highest. No febrile reactions, clinical illness, or pregnancy loss was observed following vaccination. Vaccination resulted in a rapid increase in anti-RVFV IgM (day 4) and IgG (day 7) titers. No seroconversion occurred in cohoused control animals. A subset of 20 ewes progressed to full-term delivery after vaccination. All lambs were born without musculoskeletal, neurological, or histological birth defects. Vaccine efficacy was assessed in 9 pregnant animals challenged at day 122 of gestation with virulent RVFV (1.0 × 10(6) PFU intravenously). Following challenge, 100% (9/9) of the animals were protected, progressed to full term, and delivered healthy lambs. As expected, all 3 sham-vaccinated controls experienced viremia, fetal death, and abortion postchallenge. These results demonstrate that the ΔNSs-ΔNSm rRVFV vaccine is safe and nonteratogenic and confers high-level protection in sheep.


Assuntos
Febre do Vale de Rift/veterinária , Vírus da Febre do Vale do Rift/imunologia , Doenças dos Ovinos/prevenção & controle , Vacinas Virais/efeitos adversos , Vacinas Virais/imunologia , Animais , Anormalidades Congênitas/prevenção & controle , Anormalidades Congênitas/veterinária , Feminino , Febre/prevenção & controle , Febre/veterinária , Deleção de Genes , Humanos , Injeções Subcutâneas , Gravidez , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Ovinos , Doenças dos Ovinos/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas não Estruturais Virais/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Viremia/prevenção & controle , Viremia/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA