Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542485

RESUMO

The integrated dysbiosis of gut microbiota and altered host transcriptomics in irritable bowel syndrome (IBS) is yet to be known. This study investigated the associations among gut microbiota and host transcriptomics in young adults with IBS. Stool and peripheral blood samples from 20 IBS subjects and 21 healthy controls (HCs) collected at the baseline visit of an RCT were sequenced to depict the gut microbiota and transcriptomic profiles, respectively. The diversities, composition, and predicted metabolic pathways of gut microbiota significantly differed between IBS subjects and HCs. Nine genera were significantly abundant in IBS stool samples, including Akkermansia, Blautia, Coprococcus, Granulicatella, Holdemania, Oribacterium, Oscillospira, Parabacteroides, and Sutterella. There were 2264 DEGs found between IBS subjects and HCs; 768 were upregulated, and 1496 were downregulated in IBS participants compared with HCs. The enriched gene ontology included the immune system process and immune response. The pathway of antigen processing and presentation (hsa04612) in gut microbiota was also significantly different in the RNA-seq data. Akkermansia, Blautia, Holdemania, and Sutterella were significantly correlated with ANXA2P2 (upregulated, positive correlations), PCSK1N (downregulated, negative correlations), and GLTPD2 (downregulated, negative correlations). This study identified the dysregulated immune response and metabolism in IBS participants revealed by the altered gut microbiota and transcriptomic profiles.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Humanos , Adulto Jovem , Síndrome do Intestino Irritável/metabolismo , Multiômica , Microbioma Gastrointestinal/fisiologia , Fezes/microbiologia , Firmicutes/genética , Imunidade , Perfilação da Expressão Gênica
2.
Microorganisms ; 11(3)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985387

RESUMO

OBJECTIVES: The objective of this study is to investigate the impact of early life experiences and gut microbiota on neurobehavioral development in preterm infants during neonatal intensive care unit (NICU) hospitalization. METHODS: Preterm infants were followed from NICU admission until their 28th postnatal day or until discharge. Daily stool samples, painful/stressful experiences, feeding patterns, and other clinical and demographic data were collected. Gut microbiota was profiled using 16S rRNA sequencing, and operational taxonomic units (OTUs) were selected to predict the neurobehaviors. The neurobehavioral development was assessed by the Neonatal Neurobehavioral Scale (NNNS) at 36 to 38 weeks of post-menstrual age (PMA). Fifty-five infants who had NNNS measurements were included in the sparse log-contrast regression analysis. RESULTS: Preterm infants who experienced a high level of pain/stress during the NICU hospitalization had higher NNNS stress/abstinence scores. Eight operational taxonomic units (OTUs) were identified to be associated with NNNS subscales after controlling demographic and clinical features, feeding patterns, and painful/stressful experiences. These OTUs and taxa belonging to seven genera, i.e., Enterobacteriaceae_unclassified, Escherichia-Shigella, Incertae_Sedis, Veillonella, Enterococcus, Clostridium_sensu_stricto_1, and Streptococcus with five belonging to Firmicutes and two belonging to Proteobacteria phylum. The enriched abundance of Enterobacteriaceae_unclassified (OTU17) and Streptococcus (OTU28) were consistently associated with less optimal neurobehavioral outcomes. The other six OTUs were also associated with infant neurobehavioral responses depending on days at NICU stay. CONCLUSIONS: This study explored the dynamic impact of specific OTUs on neurobehavioral development in preterm infants after controlling for early life experiences, i.e., acute and chronic pain/stress and feeding in the NICU. The gut microbiota and acute pain/stressful experiences dynamically impact the neurobehavioral development in preterm infants during their NICU hospitalization.

3.
medRxiv ; 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36711616

RESUMO

Objectives: To investigate the impact of early life experiences and gut microbiota on neurobehavioral development among preterm infants during neonatal intensive care unit (NICU) hospitalization. Methods: Preterm infants were followed from the NICU admission until their 28 th postnatal day or until discharge. Daily stool samples, painful/stressful experiences, feeding patterns, and other clinical and demographic data were collected. Gut microbiota was profiled using 16S rRNA sequencing, and operational taxonomic units (OTUs) were selected to predict the neurobehaviors. The neurobehavioral development was assessed by the Neonatal Neurobehavioral Scale (NNNS) at 36 to 38 weeks of post-menstrual age (PMA). Fifty-five infants who had NNNS measurements were included in the sparse log-contrast regression analysis. Results: Preterm infants who experienced high level of pain/stress during the NICU hospitalization that were associated with higher NNNS stress/abstinence scores. Eight operational taxonomic units (OTUs) were identified to be associated with of NNNS subscales after controlling demographic and clinical features, feeding patterns, and painful/stressful experiences. These OTUs, taxa belong to seven genera including Enterobacteriaceae_unclassified, Escherichia-Shigella, Incertae_Sedis, Veillonella, Enterococcus, Clostridium_sensu_stricto_1 , and Streptococcus with five belonging to Firmicutes and two belonging to Proteobacteria phylum. The enriched abundance of Enterobacteriaceae_unclassified (OTU17) and Streptococcus (OTU28) were consistently associated with less optimal neurobehavioral outcomes. The other six OTUs were also associated with infant neurobehavioral responses depending on days at NICU stay. Conclusions: This study explored the dynamic impact of specific OTUs on neurobehavioral development among preterm infants after controlling for early life experiences, i.e., acute and chronic pain/stress, and feeding in the NICU.

4.
Sci Total Environ ; 835: 155347, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35460780

RESUMO

Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.


Assuntos
COVID-19 , Doenças Transmissíveis , COVID-19/epidemiologia , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias , RNA Viral , SARS-CoV-2 , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias
5.
Interdiscip Nurs Res ; 1(1): 36-42, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36590866

RESUMO

Background: Preterm infants are at risk for severe infections due to their immature immune systems. Factors such as early life pain/stress experiences and feeding may influence immune activation and maturation of immune systems. However, the underlying mechanism remains unclear. Fecal calprotectin (FCP) is a noninvasive surrogate biomarker of mucosal inflammation in the gastrointestinal tract and has been used in detecting intestinal inflammation in specific pediatric gastrointestinal disorders. Objective: To describe the longitudinal trajectory of FCP levels in preterm infants and investigate the contributing factors that are associated with FCP levels. Design: A longitudinal study design was used. Settings: Preterm infants were recruited from 2 neonatal intensive care units (NICU) of a children's medical center in the North-eastern US. Methods: Preterm infants were followed during their first 4 weeks of NICU hospitalization. Stool samples were collected twice per week to quantify the FCP levels. Cumulative pain/stress experiences and feeding types were measured daily. A linear mixed-effect model was used to examine the associations between FCP levels and demographic and clinical characteristics, cumulative pain/stress, and feeding over time. Results: Forty-nine preterm infants were included in the study. Infants' FCP levels varied largely with a mean of 268.7±261.3 µg/g and increased over time. Preterm infants experienced an average of 7.5±5.0 acute painful procedures and 15.3±20.8 hours of chronic painful procedures per day during their NICU stay. The mean percentage of mother's own milk increased from the first week (57.1±36.5%) to the fourth week (60.7±38.9%) after birth. Elevated FCP concentration was associated with acute and cumulative (chronic) pain/stress levels, mother's own milk, non-White race, and higher severity of illness score. Conclusions: FCP levels were elevated in preterm infants with wide interindividual and intraindividual variations. Cumulative pain/stress during the NICU hospitalization, feeding, race, and health status may influence FCP concentrations in early life that may be associated with inflammatory gut processes.

6.
Interdiscip Nurs Res ; 1(1): 6-13, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36590867

RESUMO

Objectives: The gut microbiota among preterm infants is shaped by sex and feeding types. However, sex-specific weekly patterns of gut microbiome profiles among preterm infants during their neonatal intensive care unit (NICU) hospitalization remain unclear. This study aimed to investigate the effect of sex on the weekly development of preterm neonatal gut microbiota in the first 4 weeks of NICU hospitalization. Methods: This secondary data analysis included 28 preterm neonates with 261 stool samples collected from January 2014 to February 2015 in the Northeastern United States. The 16S rRNA V4 gene regions of the stool samples were sequenced and aligned against the SILVA 132 database by using Mothur 1.42.3. The sex-specific weekly diversity indexes and relative abundance of bacterial taxonomic composition were generated by Mothur and analyzed by R packages. Sex-specific weekly compositional patterns of the gut microbiome and predicted metabolic functions of gut microbiome profiles were compared, respectively. Results: In each week of the NICU hospitalization, preterm females and males had significantly distinguished ß-diversity indices and compositions of gut microbiota. Both females and males had significantly enriched Bifidobacterium, a protection feature, in stool samples collected in the third week compared with those in the second week. The predicted metabolic pathways were significantly different between females and males in the second, third, and fourth week of the NICU hospitalization. Both females and males had significantly abundant pathways. Males consistently had more abundance of "lipopolysaccharide biosynthesis" than females in the second, third, and fourth week. Males also had a significant abundance of "membrane and intracellular structural molecules" and "glycan biosynthesis and metabolism" in the second and third week. Conclusions: Sex shaped the weekly patterns of preterm neonatal gut microbiome profiles during the first 4 weeks of the NICU hospitalization. Further clinical interventions should consider the distinct gut microbiota compositions and predicted functional profiles between female and male preterm neonates.

7.
J Neuroimmune Pharmacol ; 17(1-2): 305-317, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34448131

RESUMO

Cocaine use is commonly associated with increased chronic systemic inflammation. However, the drivers for cocaine use-mediated systemic inflammation are not fully understood. In the current study, we recruited individuals with cocaine use disorder and healthy individuals who did not use cocaine and collected paired saliva and blood samples. The saliva samples were used to assess the oral microbiome, and the plasma samples were evaluated for 33 cytokines and chemokines. Cocaine users exhibited decreased saliva microbial diversities compared to non-users. Streptococcus was the only increased genus in the saliva from cocaine users, whereas several genera were decreased in cocaine users compared to non-users. Notably, cocaine users exhibited increased plasma levels of several monocyte activation markers, including monocyte chemoattractant protein (MCP)-4, macrophage inflammatory protein (MIP)-3α, macrophage-derived chemokine (MDC), and thymus and activation-regulated chemokine (TARC), all of which were correlated with increased saliva levels of three Streptococcus species. Furthermore, treatment with Streptococcus or its lipoteichoic acid preferentially activated primary human monocytes to produce proinflammatory cytokines and chemokines, such as MIP-3α and TARC, in vitro compared to controls. However, monocytes failed to produce these chemokines after exposure to cocaine or cocaine plus bacteria compared to medium or bacteria alone. This study revealed that chronic cocaine use-associated inflammation in the blood may result from increased oral Streptococcus and its effects on myeloid cell activation, but does not result from cocaine directly.


Assuntos
Monócitos , Streptococcus , Humanos
8.
Stat Med ; 41(3): 580-594, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34897772

RESUMO

To link a clinical outcome with compositional predictors in microbiome analysis, the linear log-contrast model is a popular choice, and the inference procedure for assessing the significance of each covariate is also available. However, with the existence of multiple potentially interrelated outcomes and the information of the taxonomic hierarchy of bacteria, a multivariate analysis method that considers the group structure of compositional covariates and an accompanying group inference method are still lacking. Motivated by a study for identifying the microbes in the gut microbiome of preterm infants that impact their later neurobehavioral outcomes, we formulate a constrained integrative multi-view regression. The neurobehavioral scores form multivariate responses, the log-transformed sub-compositional microbiome data form multi-view feature matrices, and a set of linear constraints on their corresponding sub-coefficient matrices ensures the sub-compositional nature. We assume all the sub-coefficient matrices are possible of low-rank to enable joint selection and inference of sub-compositions/views. We propose a scaled composite nuclear norm penalization approach for model estimation and develop a hypothesis testing procedure through de-biasing to assess the significance of different views. Simulation studies confirm the effectiveness of the proposed procedure. We apply the method to the preterm infant study, and the identified microbes are mostly consistent with existing studies and biological understandings.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Modelos Lineares , Análise Multivariada
9.
EBioMedicine ; 74: 103701, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34826801

RESUMO

BACKGROUND: Little is known about chronic cannabis smoking-associated oral microbiome and its effects on central nervous system (CNS) functions. METHODS: In the current study, we have analyzed the saliva microbiome in individuals who chronically smoked cannabis with cannabis use disorder (n = 16) and in non-smoking controls (n = 27). The saliva microbiome was analyzed using microbial 16S rRNA sequencing. To investigate the function of cannabis use-associated oral microbiome, mice were orally inoculated with live Actinomyces meyeri, Actinomyces odontolyticus, or Neisseria elongata twice per week for six months, which mimicked human conditions. FINDINGS: We found that cannabis smoking in humans was associated with oral microbial dysbiosis. The most increased oral bacteria were Streptococcus and Actinomyces genus and the most decreased bacteria were Neisseria genus in chronic cannabis smokers compared to those in non-smokers. Among the distinct species bacteria in cannabis smokers, the enrichment of Actinomyces meyeri was inversely associated with the age of first cannabis smoking. Strikingly, oral exposure of Actinomyces meyeri, an oral pathobiont, but not the other two control bacteria, decreased global activity, increased macrophage infiltration, and increased ß-amyloid 42 protein production in the mouse brains. INTERPRETATION: This is the first study to reveal that long-term oral cannabis exposure is associated oral enrichment of Actinomyces meyeri and its contributions to CNS abnormalities.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Bactérias/classificação , Encéfalo/metabolismo , Macrófagos/metabolismo , Fumar Maconha/psicologia , Saliva/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Estudos de Casos e Controles , Linhagem Celular , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Feminino , Humanos , Fumar Maconha/imunologia , Fumar Maconha/metabolismo , Camundongos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Front Cell Infect Microbiol ; 11: 671074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458157

RESUMO

Infant gut microbiota plays a vital role in immune response, mediates neurobehavioral development and health maintenance. Studies of twins' gut microbiota found that gut microbiota composition and diversity tend to be mature and stable with increasing postnatal age (PNA). Preterm infant gut microbiome shifts dramatically when they were staying in the neonatal intensive care unit (NICU). Compositions and shifting characteristics of gut microbiota among neonatal preterm twins and triplets during their early life are still unknown, which impedes a better understanding of the mechanism underpinning neurobehavioral development and precise intervention/health of preterm neonates. This longitudinal cohort study used a twins/triplets design to investigate the interaction of genetic (e.g., male vs. female) and environmental factors influencing the development of the gut microbiome in early life. We included 39 preterm infants, 12 were Female twins/triplets (Female T/T) including 3 twins pairs and 2 triplets, 12 were male twins (Male T) including 6 twins pairs, and 15 were mixed-sex twins/triplets (Mix T/T) including 6 twins pairs and 1 triplet (8 females and 7 males) during the first four weeks of NICU stay. Weekly gut microbiota patterns between females and males were compared by linear discriminant analysis (LDA) effect size (LEfSe). Metagenomics function of gut microbiota was predicted by using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Weekly function (KEGG pathways) differences between females and males were detected by using Statistical Analysis of Metagenomic Profiles (STAMP). Results found that female pairs and male pairs were significantly different in gut microbiome diversity, compositions, and predicted metabolic profiles, importantly, females and males were also significantly dissimilar within their co-twin/triplet pairs of the mixed-sex group, infants of co-twins/triplets shared more similar features than un-related infants from different twins' pair. Future research developing personalized interventions for vulnerable high-risk infants should consider sex, and the interaction of sex and environmental factors.


Assuntos
Microbioma Gastrointestinal , Caracteres Sexuais , Gêmeos , Feminino , Humanos , Lactente , Recém-Nascido , Recém-Nascido Prematuro , Estudos Longitudinais , Masculino , Filogenia
11.
Antibiotics (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34438975

RESUMO

This study investigated the prophylactic and therapeutic efficacies of baicalin (BC), a plant-derived flavone glycoside, in reducing the severity of Clostridioides difficile infection (CDI) in a mouse model. In the prophylactic trial, C57BL/6 mice were provided with BC (0, 11, and 22 mg/L in drinking water) from 12 days before C. difficile challenge through the end of the experiment, whereas BC administration started day 1 post challenge in the therapeutic trial. Both challenge and control groups were infected with 106 CFU/mL of hypervirulent C. difficile BAA 1803 spores or sterile PBS, and the clinical and diarrheal scores were recorded for 10 days post challenge. On day 2 post challenge, fecal and tissue samples were collected from mice prophylactically administered with BC for microbiome and histopathologic analysis. Both prophylactic and therapeutic supplementation of BC significantly reduced the severity of colonic lesions and improved CDI clinical progression and outcome compared with control (p < 0.05). Microbiome analysis revealed a significant increase in Gammaproteobacteria and reduction in the abundance of protective microbiota (Firmicutes) in antibiotic-treated and C. difficile-infected mice compared with controls (p < 0.05). However, baicalin supplementation favorably altered the microbiome composition, as revealed by an increased abundance in beneficial bacteria, especially Lachnospiraceae and Akkermansia. Our results warrant follow-up investigations on the use of BC as an adjunct to antibiotic therapy to control gut dysbiosis and reduce C. difficile infection in humans.

12.
Nurs Res ; 70(6): 462-468, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34380978

RESUMO

BACKGROUND: The gut microbiome is an important determinant of health and disease in preterm infants. OBJECTIVES: The objective of this article was to share our current protocol for other neonatal intensive care units to potentially expand their existing protocols, aiming to characterize the relationship between the intestinal microbiome and health outcomes in preterm infants. METHODS: This prospective, longitudinal study planned to recruit 160 preterm infants born <32 weeks gestational age or weighing <1,500 g and admitted to one of two Level III/IV neonatal intensive care units. During the neonatal intensive care unit period, the primary measures included events of early life pain/stress, gut microbiome, host genetic variations, and neurobehavioral assessment. During follow-up visits, gut microbiome; pain sensitivity; and medical, growth, and developmental outcomes at 4, 8-12, and 18-24 months corrected age were measured. DISCUSSION: As of February 14, 2020, 214 preterm infants have been recruited. We hypothesize that infants who experience greater levels of pain/stress will have altered gut microbiome, including potential adverse outcomes such as necrotizing enterocolitis and host genetic variations, feeding intolerance, and/or neurodevelopmental impairments. These will differ from the intestinal microbiome of preterm infants who do not develop these adverse outcomes. To test this hypothesis, we will determine how alterations in the intestinal microbiome affect the risk of developing necrotizing enterocolitis, feeding intolerance, and neurodevelopmental impairments in preterm infants. In addition, we will examine the interaction between the intestinal microbiome and host genetics in the regulation of intestinal health and neurodevelopmental outcomes.


Assuntos
Microbioma Gastrointestinal , Crescimento e Desenvolvimento/genética , Crescimento e Desenvolvimento/fisiologia , Nível de Saúde , Recém-Nascido/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Transtornos do Neurodesenvolvimento/diagnóstico , Fatores Etários , Pré-Escolar , Connecticut , Feminino , Seguimentos , Humanos , Lactente , Estudos Longitudinais , Masculino , Estudos Prospectivos
13.
J Chem Ecol ; 47(6): 588-596, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33948884

RESUMO

Bioluminescence has been recognized as an important means for inter- and intra-species communication. A growing number of reports of red fluorescence occurring in keratinaceous materials have become available. The fluorophore(s) in these cases were shown to be, or suspected to be, free base porphyrins. The red fluorescence found in the downs of bustards was associated with inter-species signaling in mate selection. First reported in 1925, we confirm that spines of the European hedgehog (Erinaceus europaeus) when irradiated with UV (365-395 nm) light display red fluorescence localized in the light-colored sections of their proximal ends. Using reflectance fluorescence spectroscopy, we confirmed that the fluorophores responsible for the emission are free-base porphyrins, as suspected in the original report. Base-induced degradation of the spine matrix and subsequent HPLC, UV-vis, and ESI+ mass spectrometry analysis revealed the presence of a mixture of coproporphyrin III and uroporphyrin III as predominant porphyrins and a minor fraction of protoporphyrin IX. Investigation of the spine microbiome uncovered the abundant presence of bacteria known to secrete and/or interconvert porphyrins and that are not present on the non-fluorescing quills of the North American porcupine (Erethizon dorsatum). Given this circumstantial evidence, we propose the porphyrins could originate from commensal bacteria. Furthermore, we hypothesize that the fluorescence may be incidental and of no biological function for the hedgehog.


Assuntos
Fluorescência , Ouriços/metabolismo , Ouriços/microbiologia , Porfirinas/metabolismo , Coluna Vertebral , Animais , Ouriços/anatomia & histologia
14.
J Pers Med ; 11(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33429936

RESUMO

The interplay between diet and gut microbiota has gained interest as a potential contributor in pathophysiology of irritable bowel syndrome (IBS). The purpose of this study was to compare food components and gut microbiota patterns between IBS patients and healthy controls (HC) as well as to explore the associations of food components and microbiota profiles. A cross-sectional study was conducted with 80 young adults with IBS and 21 HC recruited. The food frequency questionnaire was used to measure food components. Fecal samples were collected and profiled by 16S rRNA Illumina sequencing. Food components were similar in both IBS and HC groups, except in caffeine consumption. Higher alpha diversity indices and altered gut microbiota were observed in IBS compared to the HC. A negative correlation existed between total observed species and caffeine intake in the HC, and a positive correlation between alpha diversity indices and dietary fiber in the IBS group. Higher alpha diversity and gut microbiota alteration were found in IBS people who consumed caffeine more than 400 mg/d. Moreover, high microbial diversity and alteration of gut microbiota composition in IBS people with high caffeine consumption may be a clue toward the effects of caffeine on the gut microbiome pattern, which warrants further study.

15.
J Environ Qual ; 49(6): 1530-1540, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043461

RESUMO

In this study, bacteria community analysis was performed to supplement a preexisting evaluation of nitrate contamination in drinking water wells at a coastal site in Old Lyme, CT. Given well usage and coastal hydrogeologic conditions, the source(s) of nitrate contamination in domestic wells could not be discerned between local septic systems or a nearby farm where organic fertilizers were used. Groundwater bacteria communities are known to be sensitive to a variety of environmental conditions. As such, they are potentially useful in distinguishing groundwater recharge sources. Groundwater samples collected from wells were analyzed using polymerase chain reactions (PCR) and 16S rRNA sequencing to determine the bacteria distributions in each well. The biostatistical analysis of the data using Bray-Curtis nonmetric multidimensional scaling and permutational multivariate analysis of variance revealed three distinct bacteria community distributions that coincided with three different areas on the site. Additionally, principal component analysis (PCA) of the water quality data revealed that wells with similar bacteria shared similar water quality, all of which was indicative of local recharge. These findings suggested that the domestic well nitrate contamination was derived from local septic systems rather than the farm. Septic indicator analysis using ultra-performance liquid chromatography-tandem mass spectrometry determined the presence of caffeine in domestic wells, which was consistent with the conclusions from the bacteria analysis, PCA, and the known hydrogeologic conditions. The low cost, ease of sample collection, and growing availability of bioinformatics laboratory services and software are conducive to the application of microbial community analysis as a supplemental tool for groundwater investigations.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Bactérias/genética , Monitoramento Ambiental , RNA Ribossômico 16S/genética , Características de Residência , Poluentes Químicos da Água/análise
16.
Microbiol Resour Announc ; 9(7)2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054706

RESUMO

Four wild-type Campylobacter jejuni strains isolated from the cecal contents of broiler chickens were sequenced. The average genome size was 1,622,170 bp, with 1,667 to 1,761 coding sequences and 47 to 51 RNAs. Multiple genes encoding motility, intestinal colonization, toxin production, stress tolerance, and multidrug resistance were present in all the strains.

17.
ISME J ; 14(5): 1207-1222, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32042100

RESUMO

Streptococcal glucosyltransferases (Gtf) synthesize α-glucan exopolymers which contribute to biofilm matrix. Streptococcus oralis interacts with the opportunistic pathogen Candida albicans to form hypervirulent biofilms. S. oralis 34 has a single gtf gene (gtfR). However, the role of gtfR in single and mixed species biofilms with C. albicans has never been examined. A gtfR deletion mutant, purified GtfR, and recombinant GtfR glucan-binding domain were tested in single and mixed biofilms on different substrata in vitro. A mouse oral infection model was also used. We found that in single species biofilms growing with sucrose on abiotic surfaces S. oralis gtfR increased biofilm matrix, but not bacterial biomass. In biofilms with C. albicans, S. oralis encoding gtfR showed increased bacterial biomass on all surfaces. C. albicans had a positive effect on α-glucan synthesis, and α-glucans increased C. albicans accretion on abiotic surfaces. In single and mixed infection of mice receiving sucrose S. oralis gtfR enhanced mucosal burdens. However, sucrose had a negative impact on C. albicans burdens and reduced S. oralis burdens in co-infected mice. Our data provide new insights on the GtfR-mediated interactions between the two organisms and the influence of biofilm substratum and the mucosal environment on these interactions.


Assuntos
Biofilmes , Candida albicans/fisiologia , Glucosiltransferases/metabolismo , Streptococcus oralis/fisiologia , Animais , Candida albicans/genética , Glucanos , Sistema da Enzima Desramificadora do Glicogênio , Camundongos , Streptococcus , Streptococcus mutans/genética , Streptococcus oralis/genética
18.
Nutrients ; 12(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973241

RESUMO

Recent studies have suggested that blackcurrant (BC) anthocyanins have promising health benefits, possibly through regulating gut microbiome. Three- and eighteen-month old female mice were fed standard mouse diets for 4 months, each with or without BC (1% w/w) supplementation (n = 3 in each treatment group, 12 in total). We then assessed gut microbiome profiles using 16S sequencing of their feces. Old mice had a less diverse microbiome community compared to young mice and there was a remarkable age-related difference in microbiome composition in the beta diversity analysis. BC supplementation did not significantly affect alpha or beta diversity. The relative abundance of several phyla, including Firmicutes, Bacteroidetes, Proteobacteria and Tenericutes, was lower in old mice. BC downregulated Firmicutes abundance in young mice and upregulated Bacteroidetes in both age groups, leading to a decreased Firmicutes/Bacteroidetes ratio. There were age-specific differences in the effect of BC supplementation on the microbiome. Twenty-four operational taxonomic units showed a significant interaction between age and BC supplementation (p < 0.01), which suggests that the ecosystem and the host health status affect the functions and efficiency of BC intake. These results indicate that BC supplementation favorably modulates gut microbiome, but there are distinct age-specific differences. Studies with human hosts are needed to better understand BC's regulatory effects on the gut microbiome.


Assuntos
Fatores Etários , Antocianinas/farmacologia , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , Ribes/química , Envelhecimento/metabolismo , Animais , Ecossistema , Feminino , Nível de Saúde , Camundongos , Filogenia
19.
J Matern Fetal Neonatal Med ; 33(3): 349-358, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29909714

RESUMO

Objectives: To define gut microbial patterns in preterm infants with and without necrotizing enterocolitis (NEC) and to characterize clinical factors related to the composition of the preterm intestinal microbiome.Methods: Fecal samples were collected at one-week intervals from infants with gestational ages <30 weeks at a single level IV neonatal intensive care unit. Using 16S rRNA gene sequencing, the composition and diversity of microbiota were determined in samples collected from five NEC infants and five matched controls. Hierarchical linear regression was used to identify clinical factors related to microbial diversity and specific bacterial signatures.Results: Low levels of diversity were demonstrated in samples obtained from all preterm infants and antibiotic exposure further decreased diversity among both NEC cases and controls. Fecal microbial composition differed between NEC cases and controls, with a greater abundance of Proteobacteria and bacteria belonging to the class Gammaproteobacteria among NEC infants. Control infants demonstrated a greater abundance of bacteria belonging to the phylum Firmicutes.Conclusion: These findings indicate that an association exists between intestinal Proteobacteria and NEC, and strengthens the notion that an overly exuberant response to Gram-negative products, particularly lipopolysaccharide, in the preterm intestine is involved in NEC pathogenesis. Cumulative exposure to antibiotics corresponded to a reduction in microbial diversity in both NEC cases and controls.


Assuntos
Enterocolite Necrosante/microbiologia , Microbioma Gastrointestinal , Estudos de Casos e Controles , Fezes/microbiologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino
20.
J Pediatr Gastroenterol Nutr ; 69(2): 224-230, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31058777

RESUMO

INTRODUCTION: Premature infants often require parenteral nutrition (PN) until they reach enteral autonomy which puts them at risk of developing PN-associated cholestasis (PNAC). We sought to compare longitudinal changes in fecal microbiomes of premature infants who developed PNAC versus those who did not despite being on similar PN doses. METHODS: Stool samples from premature infants (gestational age <30 weeks) who developed direct bilirubin ≥1.5 mg/dL while receiving PN were classified as precholestasis, cholestasis, or postcholestasis based on bilirubin levels at the time of sample acquisition and were compared to matched control groups 1, 2, and 3, respectively. RESULTS: A total of 102 fecal samples from 8 cases and 10 controls were analyzed. Precholestasis samples were more abundant in phylum Firmicutes and genus Staphylococcus, whereas control 1 was more abundant in phylum Proteobacteria and genus Escherichia-Shigella. Nonmetric multidimensional scaling ordination plots based on the taxonomic composition of early fecal samples revealed significant separation between cases and controls. On indicator species analysis, genus Bacilli was more prevalent in samples from the precholestasis group, whereas genus Escherichia-Shigella was more prevalent in control 1. With feeding advances, weaning of PN and resolution of PNAC, most differences in microbiota resolved with the exception of control 3 group being more diverse compared to the postcholestasis group. CONCLUSIONS: Premature neonates who develop PNAC, compared to those who do not, show significantly different fecal microbiomes preceding the biochemical detection of cholestasis.


Assuntos
Colestase/microbiologia , Recém-Nascido Prematuro , Nutrição Parenteral/efeitos adversos , Estudos de Casos e Controles , Colestase/etiologia , Estudos de Coortes , Fezes/microbiologia , Feminino , Humanos , Fenômenos Fisiológicos da Nutrição do Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Microbiota , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA