Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 9(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34944633

RESUMO

Cancer is a multifaceted disease that involves several molecular mechanisms including changes in gene expression. Two important processes altered in cancer that lead to changes in gene expression include altered microRNA (miRNA) expression and aberrant splicing events. MiRNAs are short non-coding RNAs that play a central role in regulating RNA silencing and gene expression. Alternative splicing increases the diversity of the proteome by producing several different spliced mRNAs from a single gene for translation. MiRNA expression and alternative splicing events are rigorously regulated processes. Dysregulation of miRNA and splicing events promote carcinogenesis and drug resistance in cancers including breast, cervical, prostate, colorectal, ovarian and leukemia. Alternative splicing may change the target mRNA 3'UTR binding site. This alteration can affect the produced protein and may ultimately affect the drug affinity of target proteins, eventually leading to drug resistance. Drug resistance can be caused by intrinsic and extrinsic factors. The interplay between miRNA and alternative splicing is largely due to splicing resulting in altered 3'UTR targeted binding of miRNAs. This can result in the altered targeting of these isoforms and altered drug targets and drug resistance. Furthermore, the increasing prevalence of cancer drug resistance poses a substantial challenge in the management of the disease. Henceforth, molecular alterations have become highly attractive drug targets to reverse the aberrant effects of miRNAs and splicing events that promote malignancy and drug resistance. While the miRNA-mRNA splicing interplay in cancer drug resistance remains largely to be elucidated, this review focuses on miRNA and alternative mRNA splicing (AS) events in breast, cervical, prostate, colorectal and ovarian cancer, as well as leukemia, and the role these events play in drug resistance. MiRNA induced cancer drug resistance; alternative mRNA splicing (AS) in cancer drug resistance; the interplay between AS and miRNA in chemoresistance will be discussed. Despite this great potential, the interplay between aberrant splicing events and miRNA is understudied but holds great potential in deciphering miRNA-mediated drug resistance.

2.
Genes (Basel) ; 12(3)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804181

RESUMO

Head and neck cancers include cancers that originate from a variety of locations. These include the mouth, nasal cavity, throat, sinuses, and salivary glands. These cancers are the sixth most diagnosed cancers worldwide. Due to the tissues they arise from, they are collectively named head and neck squamous cell carcinomas (HNSCC). The most important risk factors for head and neck cancers are infection with human papillomavirus (HPV), tobacco use and alcohol consumption. The genetic basis behind the development and progression of HNSCC includes aberrant non-coding RNA levels. However, one of the most important differences between healthy tissue and HNSCC tissue is changes in the alternative splicing of genes that play a vital role in processes that can be described as the hallmarks of cancer. These changes in the expression profile of alternately spliced mRNA give rise to various protein isoforms. These protein isoforms, alternate methylation of proteins, and changes in the transcription of non-coding RNAs (ncRNA) can be used as diagnostic or prognostic markers and as targets for the development of new therapeutic agents. This review aims to describe changes in alternative splicing and ncRNA patterns that contribute to the development and progression of HNSCC. It will also review the use of the changes in gene expression as biomarkers or as the basis for the development of new therapies.


Assuntos
Processamento Alternativo/genética , Neoplasias de Cabeça e Pescoço/genética , Mutação/genética , Infecções por Papillomavirus/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias de Cabeça e Pescoço/virologia , Humanos , Infecções por Papillomavirus/virologia , RNA não Traduzido/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA