Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 31(1): 18, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287360

RESUMO

BACKGROUND: Mycobacterium abscessus, a fast-growing non-tuberculous mycobacterium, is an emerging opportunistic pathogen responsible for chronic bronchopulmonary infections in people with respiratory diseases such as cystic fibrosis (CF). Due to its intrinsic polyresistance to a wide range of antibiotics, most treatments for M. abscessus pulmonary infections are poorly effective. In this context, antimicrobial peptides (AMPs) active against bacterial strains and less prompt to cause resistance, represent a good alternative to conventional antibiotics. Herein, we evaluated the effect of three arenicin isoforms, possessing two or four Cysteines involved in one (Ar-1, Ar-2) or two disulfide bonds (Ar-3), on the in vitro growth of M. abscessus. METHODS: The respective disulfide-free AMPs, were built by replacing the Cysteines with alpha-amino-n-butyric acid (Abu) residue. We evaluated the efficiency of the eight arenicin derivatives through their antimicrobial activity against M. abscessus strains, their cytotoxicity towards human cell lines, and their hemolytic activity on human erythrocytes. The mechanism of action of the Ar-1 peptide was further investigated through membrane permeabilization assay, electron microscopy, lipid insertion assay via surface pressure measurement, and the induction of resistance assay. RESULTS: Our results demonstrated that Ar-1 was the safest peptide with no toxicity towards human cells and no hemolytic activity, and the most active against M. abscessus growth. Ar-1 acts by insertion into mycobacterial lipids, resulting in a rapid membranolytic effect that kills M. abscessus without induction of resistance. CONCLUSION: Overall, the present study emphasized Ar-1 as a potential new alternative to conventional antibiotics in the treatment of CF-associated bacterial infection related to M. abscessus.


Assuntos
Fibrose Cística , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Poliestirenos , Humanos , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Antibacterianos/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/microbiologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
2.
Sci Total Environ ; 879: 162875, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36933721

RESUMO

Antimicrobial peptides (AMPs) play a key role in the external immunity of animals, offering an interesting model for studying the influence of the environment on the diversification and evolution of immune effectors. Alvinellacin (ALV), arenicin (ARE) and polaricin (POL, a novel AMP identified here), characterized from three marine worms inhabiting contrasted habitats ('hot' vents, temperate and polar respectively), possess a well conserved BRICHOS domain in their precursor molecule despite a profound amino acid and structural diversification of the C-terminal part containing the core peptide. Data not only showed that ARE, ALV and POL display an optimal bactericidal activity against the bacteria typical of the habitat where each worm species lives but also that this killing efficacy is optimal under the thermochemical conditions encountered by their producers in their environment. Moreover, the correlation between species habitat and the cysteine contents of POL, ARE and ALV led us to investigate the importance of disulfide bridges in their biological efficacy as a function of abiotic pressures (pH and temperature). The construction of variants using non-proteinogenic residues instead of cysteines (α-aminobutyric acid variants) leading to AMPs devoid of disulfide bridges, provided evidence that the disulfide pattern of the three AMPs allows for a better bactericidal activity and suggests an adaptive way to sustain the fluctuations of the worm's environment. This work shows that the external immune effectors exemplified here by BRICHOS AMPs are evolving under strong diversifying environmental pressures to be structurally shaped and more efficient/specific under the ecological niche of their producer.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Peptídeos Antimicrobianos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Sequência de Aminoácidos , Aminoácidos , Cisteína/química , Dissulfetos
3.
Molecules ; 27(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36500334

RESUMO

Microtubule targeting agents (MTA) are anti-cancer molecules that bind tubulin and interfere with the microtubule functions, eventually leading to cell death. In the present study, we used an in vitro microtubule polymerization assay to screen several venom families for the presence of anti-microtubule activity. We isolated myotoxin-3, a peptide of the crotamine family, and three isoforms from the venom of the Northern Pacific rattlesnake Crotalus oreganus oreganus, which was able to increase tubulin polymerization. Myotoxin-3 turned out to be a cell-penetrating peptide that slightly diminished the viability of U87 glioblastoma and MCF7 breast carcinoma cells. Myotoxin 3 also induced remodeling of the U87 microtubule network and decreased MCF-7 microtubule dynamic instability. These effects are likely due to direct interaction with tubulin. Indeed, we showed that myotoxin-3 binds to tubulin heterodimer with a Kd of 5.3 µM and stoichiometry of two molecules of peptide per tubulin dimer. Our results demonstrate that exogenous peptides are good candidates for developing new MTA and highlight the richness of venoms as a source of pharmacologically active molecules.


Assuntos
Venenos de Crotalídeos , Neurotoxinas , Animais , Humanos , Neurotoxinas/metabolismo , Tubulina (Proteína)/metabolismo , Crotalus/metabolismo , Venenos de Crotalídeos/farmacologia , Venenos de Crotalídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
4.
Cancers (Basel) ; 14(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497391

RESUMO

INTRODUCTION: Metastatic melanoma is an aggressive tumor and can constitute a real therapeutic challenge despite the significant progress achieved with targeted therapies and immunotherapies, thus highlighting the need for the identification of new therapeutic targets. Adrenomedullin (AM) is a peptide with significant expression in multiple types of tumors and is multifunctional. AM impacts angiogenesis and tumor growth and binds to calcitonin receptor-like receptor/receptor activity-modifying protein 2 or 3 (CLR/RAMP2; CLR/RAMP3). METHODS: In vitro and in vivo studies were performed to determine the functional role of AM in melanoma growth and tumor-associated angiogenesis and lymphangiogenesis. RESULTS: In this study, AM and AM receptors were immunohistochemically localized in the tumoral compartment of melanoma tissue, suggesting that the AM system plays a role in melanoma growth. We used A375, SK-MEL-28, and MeWo cells, for which we demonstrate an expression of AM and its receptors; hypoxia induces the expression of AM in melanoma cells. The proliferation of A375 and SK-MEL-28 cells is decreased by anti-AM antibody (αAM) and anti-AMR antibodies (αAMR), supporting the fact that AM may function as a potent autocrine/paracrine growth factor for melanoma cells. Furthermore, migration and invasion of melanoma cells increased after treatment with AM and decreased after treatment with αAMR, thus indicating that melanoma cells are regulated by AM. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing melanoma cells, as demonstrated by reduced numbers of vessel structures, which suggests that AM is one of the melanoma cells-derived factors responsible for endothelial cell-like and pericyte recruitment in the construction of neovascularization. In vivo, αAMR therapy blocked angiogenesis and lymphangiogenesis and decreased proliferation in MeWo xenografts, thereby resulting in tumor regression. Histological examination of αAMR-treated tumors showed evidence of the disruption of tumor vascularity, with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. CONCLUSIONS: The expression of AM by melanoma cells promotes tumor growth and neovascularization by supplying/amplifying signals for neoangiogenesis and lymphangiogenesis.

5.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807390

RESUMO

Voltage-gated Na+ (NaV) channels are significant therapeutic targets for the treatment of cardiac and neurological disorders, thus promoting the search for novel NaV channel ligands. With the objective of discovering new blockers of NaV channel ligands, we screened an In-House vegetal alkaloid library using fluorescence cell-based assays. We screened 62 isoquinoline alkaloids (IA) for their ability to decrease the FRET signal of voltage sensor probes (VSP), which were induced by the activation of NaV channels with batrachotoxin (BTX) in GH3b6 cells. This led to the selection of five IA: liriodenine, oxostephanine, thalmiculine, protopine, and bebeerine, inhibiting the BTX-induced VSP signal with micromolar IC50. These five alkaloids were then assayed using the Na+ fluorescent probe ANG-2 and the patch-clamp technique. Only oxostephanine and liriodenine were able to inhibit the BTX-induced ANG-2 signal in HEK293-hNaV1.3 cells. Indeed, liriodenine and oxostephanine decreased the effects of BTX on Na+ currents elicited by the hNaV1.3 channel, suggesting that conformation change induced by BTX binding could induce a bias in fluorescent assays. However, among the five IA selected in the VSP assay, only bebeerine exhibited strong inhibitory effects against Na+ currents elicited by the hNav1.2 and hNav1.6 channels, with IC50 values below 10 µM. So far, bebeerine is the first BBIQ to have been reported to block NaV channels, with promising therapeutical applications.


Assuntos
Alcaloides , Corantes Fluorescentes , Alcaloides/farmacologia , Batraquiotoxinas/metabolismo , Batraquiotoxinas/farmacologia , Viés , Células HEK293 , Humanos , Isoquinolinas/farmacologia , Ligantes , Sódio/metabolismo
6.
Molecules ; 27(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35164071

RESUMO

Glioblastoma is the most aggressive and invasive form of central nervous system tumors due to the complexity of the intracellular mechanisms and molecular alterations involved in its progression. Unfortunately, current therapies are unable to stop its neoplastic development. In this context, we previously identified and characterized AaTs-1, a tetrapeptide (IWKS) from Androctonus autralis scorpion venom, which displayed an anti-proliferative effect against U87 cells with an IC50 value of 0.57 mM. This peptide affects the MAPK pathway, enhancing the expression of p53 and altering the cytosolic calcium concentration balance, likely via FPRL-1 receptor modulation. In this work, we designed and synthesized new dendrimers multi-branched molecules based on the sequence of AaTs-1 and showed that the di-branched (AaTs-1-2B), tetra-branched (AaTs-1-4B) and octo-branched (AaTs-1-8B) dendrimers displayed 10- to 25-fold higher effects on the proliferation of U87 cells than AaTs-1. We also found that the effects of the newly designed molecules are mediated by the enhancement of the ERK1/2 and AKT phosphorylated forms and by the increase in p53 expression. Unlike AaTs-1, AaTs-1-8B and especially AaTs-1-4B affected the migration of the U87 cells. Thus, the multi-branched peptide synthesis strategy allowed us to make molecules more active than the linear peptide against the proliferation of U87 glioblastoma cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Oligopeptídeos/farmacologia , Venenos de Escorpião/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dendrímeros/química , Dendrímeros/farmacologia , Humanos , Oligopeptídeos/química , Venenos de Escorpião/química , Escorpiões
7.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055012

RESUMO

Thanks to the crosstalk between Na+ and Ca2+ channels, Na+ and Ca2+ homeostasis interplay in so-called excitable cells enables the generation of action potential in response to electrical stimulation. Here, we investigated the impact of persistent activation of voltage-gated Na+ (NaV) channels by neurotoxins, such as veratridine (VTD), on intracellular Ca2+ concentration ([Ca2+]i) in a model of excitable cells, the rat pituitary GH3b6 cells, in order to identify the molecular actors involved in Na+-Ca2+ homeostasis crosstalk. By combining RT-qPCR, immunoblotting, immunocytochemistry, and patch-clamp techniques, we showed that GH3b6 cells predominantly express the NaV1.3 channel subtype, which likely endorses their voltage-activated Na+ currents. Notably, these Na+ currents were blocked by ICA-121431 and activated by the ß-scorpion toxin Tf2, two selective NaV1.3 channel ligands. Using Fura-2, we showed that VTD induced a [Ca2+]i increase. This effect was suppressed by the selective NaV channel blocker tetrodotoxin, as well by the selective L-type CaV channel (LTCC) blocker nifedipine. We also evidenced that crobenetine, a NaV channel blocker, abolished VTD-induced [Ca2+]i elevation, while it had no effects on LTCC. Altogether, our findings highlight a crosstalk between NaV and LTCC in GH3b6 cells, providing a new insight into the mode of action of neurotoxins.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Fenômenos Eletrofisiológicos , Imunofluorescência , Expressão Gênica , Ensaios de Triagem em Larga Escala , Ativação do Canal Iônico/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Neurotoxinas/farmacologia , Técnicas de Patch-Clamp , Ligação Proteica , Isoformas de Proteínas , Ratos , Canais de Sódio Disparados por Voltagem/genética
8.
Front Oncol ; 11: 753244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692535

RESUMO

VE-cadherin is an essential adhesion molecule in endothelial adherens junctions, and the integrity of these complexes is thought to be regulated by VE-cadherin tyrosine phosphorylation. We have previously shown that adrenomedullin (AM) blockade correlates with elevated levels of phosphorylated VE-cadherin (pVE-cadherinY731) in endothelial cells, associated with impaired barrier function and a persistent increase in vascular endothelial cell permeability. However, the mechanism underlying this effect is unknown. In this article, we demonstrate that the AM-mediated dephosphorylation of pVE-cadherinY731 takes place through activation of the tyrosine phosphatase SHP-2, as judged by the rise of its active fraction phosphorylated at tyrosine 542 (pSHP-2Y542) in HUVECs and glioblastoma-derived-endothelial cells. Both pre-incubation of HUVECs with SHP-2 inhibitors NSC-87877 and SHP099 and SHP-2 silencing hindered AM-induced dephosphorylation of pVE-cadherinY731 in a dose dependent-manner, showing the role of SHP-2 in the regulation of endothelial cell contacts. Furthermore, SHP-2 inhibition impaired AM-induced HUVECs differentiation into cord-like structures in vitro and impeded AM-induced neovascularization in in vivo Matrigel plugs bioassays. Subcutaneously transplanted U87-glioma tumor xenograft mice treated with AM-receptors-blocking antibodies showed a decrease in pSHP-2Y542 associated with VE-cadherin in nascent tumor vasculature when compared to control IgG-treated xenografts. Our findings show that AM acts on VE-cadherin dynamics through pSHP-2Y542 to finally modulate cell-cell junctions in the angiogenesis process, thereby promoting a stable and functional tumor vasculature.

9.
Toxins (Basel) ; 12(2)2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033352

RESUMO

In the soft treatment of cancer tumours, consequent downregulation of the malignant tissue angiogenesis constitutes an efficient way to stifle tumour development and metastasis spreading. As angiogenesis requires integrin-promoting endothelial cell adhesion, migration, and vessel tube formation, integrins represent potential targets of new therapeutic anti-angiogenic agents. Our work is a contribution to the research of such therapeutic disintegrins in animal venoms. We report isolation of one peptide, named Dabmaurin-1, from the hemotoxic venom of snake Daboia mauritanica, and we evaluate its potential anti-tumour activity through in vitro inhibition of the human vascular endothelial cell HMECs functions involved in tumour angiogenesis. Dabmaurin-1 altered, in a dose-dependent manner, without any significant cytotoxicity, HMEC proliferation, adhesion, and their mesenchymal migration onto various extracellular matrix proteins, as well as formation of capillary-tube mimics on MatrigelTM. Via experiments involving HMEC or specific cancers cells integrins, we demonstrated that the above Dabmaurin-1 effects are possibly due to some anti-integrin properties. Dabmaurin-1 was demonstrated to recognize a broad panel of prooncogenic integrins (αvß6, αvß3 or αvß5) and/or particularly involved in control of angiogenesis α5ß1, α6ß4, αvß3 or αvß5). Furthermore, mass spectrometry and partial N-terminal sequencing of this peptide revealed, it is close to Lebein-1, a known anti-ß1 disintegrin from Macrovipera lebetina venom. Therefore, our results show that if Dabmaurin-1 exhibits in vitro apparent anti-angiogenic effects at concentrations lower than 30 nM, it is likely because it acts as an anti-tumour disintegrin.


Assuntos
Inibidores da Angiogênese/isolamento & purificação , Desintegrinas/isolamento & purificação , Neovascularização Patológica/prevenção & controle , Venenos de Víboras/química , Viperidae , Sequência de Aminoácidos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desintegrinas/química , Desintegrinas/farmacologia , Relação Dose-Resposta a Droga , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/patologia , Humanos , Neovascularização Patológica/patologia , Venenos de Víboras/isolamento & purificação , Venenos de Víboras/farmacologia
10.
Mar Drugs ; 17(9)2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31470685

RESUMO

Antimicrobial peptides (AMPs) are natural antibiotics produced by all living organisms. In metazoans, they act as host defense factors by eliminating microbial pathogens. But they also help to select the colonizing bacterial symbionts while coping with specific environmental challenges. Although many AMPs share common structural characteristics, for example having an overall size between 10-100 amino acids, a net positive charge, a γ-core motif, or a high content of cysteines, they greatly differ in coding sequences as a consequence of multiple parallel evolution in the face of pathogens. The majority of AMPs is specific of certain taxa or even typifying species. This is especially the case of annelids (ringed worms). Even in regions with extreme environmental conditions (polar, hydrothermal, abyssal, polluted, etc.), worms have colonized all habitats on Earth and dominated in biomass most of them while co-occurring with a large number and variety of bacteria. This review surveys the different structures and functions of AMPs that have been so far encountered in annelids and nematodes. It highlights the wide diversity of AMP primary structures and their originality that presumably mimics the highly diverse life styles and ecology of worms. From the unique system that represents marine annelids, we have studied the effect of abiotic pressures on the selection of AMPs and demonstrated the promising sources of antibiotics that they could constitute.


Assuntos
Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Helmintos/metabolismo , Aminoácidos/metabolismo , Animais , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Ecossistema , Humanos
11.
Front Microbiol ; 9: 1148, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915567

RESUMO

Milk and dairy products harbor a wide variety of bacterial species that compete for both limited resources and space. Under these competitive conditions, bacteria develop specialized mechanisms to protect themselves during niche colonization and nutrient acquisition processes. The bacterial antagonism mechanisms include the production of antimicrobial agents or molecules that facilitate competitor dispersal. In the present work, a bacterial strain designated RC6 was isolated from Ricotta and identified as Bacillus cereus. It generates antimicrobial peptide (AMP) when grown in the presence of casein. The AMP was active against several species of Bacillus and Listeria monocytogenes. MALDI-TOF analysis of the RP-HPLC purified fractions and amino acid sequencing revealed a molecular mass of 751 Da comprised of a 6-residue sequence, YPVEPF. BLAST analysis showed that the AMP corresponds to the fractions 114-119 of bovine ß-casein and represents the product of a specific proteolysis. Analysis of the purified proteolytic fractions from the B. cereus RC6 culture supernatant indicated that the presence of at least two different endoproteases is crucial for the generation of the AMP. Indeed, we were able to identify two new candidate endoproteases by means of genome sequencing and functional assignment using a 3D structural model and molecular docking of misannotated hypothetical proteins. In this light, the capacity of B. cereus RC6 to generate antimicrobial peptides from casein, through the production of extracellular enzymes, presents a new model of antagonistic competition leading to niche colonization. Hence, as a dairy product contaminant, this strategy may enable proteolytic B. cereus RC6 niche specialization in milk matrices.

12.
Chemistry ; 24(15): 3699-3702, 2018 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-29314308

RESUMO

A catalyst/initiator-free radical addition reaction performed under mild conditions (water, 30 °C) with high yields is reported for the first time. This reaction implies simple pH-mediated alkoxyamine dissociation followed by addition onto olefinic substrates. The versatility and relevance of this selective reaction for macromolecular conjugation and engineering are shown through the syntheses of block copolymers, as well as hydrogels containing in situ-loaded proteins, which could retain biological activity. This contrasts with standard thermal radical conditions that lead to complete protein inactivation.


Assuntos
Hidrogéis/química , Substâncias Macromoleculares/química , Alcenos/química , Catálise , Radicais Livres/química , Polímeros/química , Água
13.
Oncotarget ; 8(9): 15744-15762, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28178651

RESUMO

Tumor- or cancer-associated fibroblasts (TAFs or CAFs) are active players in tumorigenesis and exhibit distinct angiogenic and tumorigenic properties. Adrenomedullin (AM), a multifunctional peptide plays an important role in angiogenesis and tumor growth through its receptors calcitonin receptor-like receptor/receptor activity modifying protein-2 and -3 (CLR/RAMP2 and CLR/RAMP3). We show that AM and AM receptors mRNAs are highly expressed in CAFs prepared from invasive breast carcinoma when compared to normal fibroblasts. Immunostaining demonstrates the presence of immunoreactive AM and AM receptors in the CAFs (n = 9). The proliferation of CAFs is decreased by anti-AM antibody (αAM) and anti-AM receptors antibody (αAMR) treatment, suggesting that AM may function as a potent autocrine/paracrine growth factor. Systemic administration of αAMR reduced neovascularization of in vivo Matrigel plugs containing CAFs as demonstrated by reduced numbers of the vessel structures, suggesting that AM is one of the CAFs-derived factors responsible for endothelial cell-like and pericytes recruitment to built a neovascularization. We show that MCF-7 admixed with CAFs generated tumors of greater volume significantly different from the MCF-7 xenografts in nude mice due in part to the induced angiogenesis. αAMR and AM22-52 therapies significantly suppressed the growth of CAFs/MCF-7 tumors. Histological examination of tumors treated with AM22-52 and aAMR showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells, induced apoptosis and decrease of tumor cell proliferation. Our findings highlight the importance of CAFs-derived AM pathway in growth of breast carcinoma and in neovascularization by supplying and amplifying signals that are essential for pathologic angiogenesis.


Assuntos
Adrenomedulina/metabolismo , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Neovascularização Patológica/metabolismo , Adrenomedulina/genética , Adrenomedulina/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Western Blotting , Neoplasias da Mama/irrigação sanguínea , Neoplasias da Mama/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/imunologia , Receptores de Adrenomedulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética
14.
Bioorg Med Chem ; 24(22): 5685-5692, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27647371

RESUMO

To discover new molecules with an inhibitory activity of melanogenesis a hundred of scorpions, snakes, spiders and amphibians venoms were screened for their capacity to inhibit mushroom tyrosinase using 3,4-l-dihydroxyphenylalanine (l-DOPA) as substrate. The Argiope lobata spider venom proved to be the most active. HPLC fraction containing Argiotoxine-636 (ArgTX-636), a polyamine known for its numerous biological activities, was found to also show a good regulation activity of melanogenesis by inhibiting DOPA and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidases activities, wore by tyrosinase (TYR) and tyrosinase-related protein 1 (TRP-1), respectively. Our results demonstrate that ArgTX-636 reduced the mushroom tyrosinase activity in a dose-dependent way with a maximal half inhibitory concentration (IC50) value of 8.34µM, when l-DOPA is used as substrate. The Lineweaver-Burk study showed that ArgTX-636 is a mixed type inhibitor of the diphenolase activity. Moreover, ArgTX-636 inhibits DHICA oxydase activity of mushroom tyrosinase activity with IC50 at 41.3µM. ArgTX-636 has no cytotoxicity in B16F10 melanoma cells at concentrations up to 42.1µM. The effect of ArgTX-636 on melanogenesis showed that melanin production in B16F10 melanoma cell decreased by approximatively 70% compared to untreated cells. ArgTX-636 displayed no significant effect on the TYR expression while the protein level of TRP-1 decreased in B16F10 cells. Thus, ArgTX-636 could have particular interest for cosmetic and/or pharmaceutical use in order to reduce important dermatoses in black and mixed skins.


Assuntos
Ácidos Indolacéticos/farmacologia , Melaninas/antagonistas & inibidores , Poliaminas/farmacologia , Venenos de Aranha/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ácidos Indolacéticos/química , Ácidos Indolacéticos/isolamento & purificação , Melaninas/metabolismo , Camundongos , Estrutura Molecular , Poliaminas/química , Poliaminas/isolamento & purificação , Relação Estrutura-Atividade
15.
Vaccine ; 34(15): 1810-5, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26902547

RESUMO

Scorpion envenoming represents a public health issue in subtropical regions of the world. Treatment and prevention need to promote antitoxin immunity. Preserving antigenic presentation while removing toxin effect remains a major challenge in toxin vaccine development. Among particulate adjuvant, particles prepared with poly (D,L-lactide) polymer are the most extensively investigated due to their excellent biocompatibility and biodegradability. The aim of this study is to develop surfactant-free PLA nanoparticles that safely deliver venom toxic fraction to enhance specific immune response. PLA nanoparticles are coated with AahG50 (AahG50/PLA) and BotG50 (BotG50/PLA): a toxic fraction purified from Androctonus australis hector and Buthus occitanus tunetanus venoms, respectively. Residual toxicities are evaluated following injections of PLA-containing high doses of AahG50 (or BotG50). Immunization trials are performed with the detoxified fraction administered alone without adjuvant. A comparative study of the effect of Freund is also included. The neutralizing capacity of sera is determined in naive mice. Six months later, immunized mice are challenged subcutaneously with increased doses of AahG50. Subcutaneous lethal dose 50 (LD50) of AahG50 and BotG50 is of 575 µg/kg and 1300 µg/kg respectively. By comparison, BotG50/PLA is totally innocuous while 50% of tested mice survive 2875 µg AahG50/kg. Alhydrogel and Freund are not able to detoxify such a high dose. Cross-antigenicity between particulate and soluble fraction is also, ensured. AahG50/PLA and BotG50/PLA induce high antibody levels in mice serum. The neutralizing capacity per mL of anti-venom was 258 µg/mL and 186 µg/mL calculated for anti-AahG50/PLA and anti-BotG50/PLA sera, respectively. Animals immunized with AahG50/PLA are protected against AahG50 injected dose of 3162 µg/kg as opposed all non-immunized mice died at this dose. We find that the detoxification approach based PLA nanoparticles, benefit the immunogenicity and protective efficacy of venom immunogen.


Assuntos
Antivenenos/uso terapêutico , Materiais Biocompatíveis/química , Imunoterapia Ativa , Poliésteres/química , Venenos de Escorpião/imunologia , Adjuvantes Imunológicos/química , Animais , Antivenenos/química , Feminino , Camundongos , Nanopartículas/química , Testes de Neutralização , Escorpiões , Testes de Toxicidade
16.
J Thorac Oncol ; 11(1): 94-107, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26762744

RESUMO

INTRODUCTION: Malignant pleural mesothelioma (MPM) grows aggressively within the thoracic cavity and has a very low cure rate, thus highlighting the need for identification of new therapeutic targets. Adrenomedullin (AM) is a multifunctional peptide that is highly expressed in several tumors and plays an important role in angiogenesis and tumor growth after binding to its receptors, calcitonin receptor-like receptor/receptor activity-modifying protein 2 (CLR/RAMP2) and calcitonin receptor-like receptor/receptor activity-modifying protein 3 (CLR/RAMP3). METHODS: Real time quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was used to assess the steady-state levels of AM, CLR, RAMP2 and RAMP3 messenger RNA (mRNA) transcripts in normal pleural tissue (n=5) and MPM (n=24). The expression of these candidates at protein level was revealed by immunohistochemistry. We also characterized the expression and regulation by hypoxia of AM system in MPM cell lines and MeT-5A cells. In vitro and in vivo studies were performed to determine the functional role of AM system in MPM. RESULTS: In this study, real-time quantitative reverse transcriptase polymerase chain reaction showed twofold to 10-fold higher levels of AM messenger RNA in MPM tissue than in normal pleural tissue. The MPM cell lines H2452, H2052, and human mesothelioma cell line MSTO-211H showed a significant increase in expression of AM messenger RNA under hypoxic conditions. Our results also show that AM stimulates cell proliferation in vitro through the Raf1 proto-oncogene, serine/threonine kinase (CRAF)/ Mitogen-activated protein kinase kinase 1 (MEK)/Extracellular regulated MAPKinase (ERK) pathway. Furthermore, the proliferation, migration, and invasion of MPM cells were decreased after treatment with anti-AM (αAM) and anti-AM receptor antibodies, thus indicating that MPM cells are regulated by AM. The action of AM was specific and mediated by CLR/RAMP2 and CLR/RAMP3 receptors. In vivo, αAM and AM22-52 antagonist therapies blocked angiogenesis and induced apoptosis in MSTO-211H xenografts, thereby resulting in tumor regression. Histologic examination of tumors treated with AM22-52 and αAM antibody showed evidence of disruption of tumor vasculature with depletion of vascular endothelial cells and a significant decrease in lymphatic endothelial cells. CONCLUSIONS: Our findings highlight the importance of the AM pathway in growth of MPM and in neovascularization by supplying and amplifying signals that are essential for pathologic neoangiogenesis and lymphangiogenesis.


Assuntos
Adrenomedulina/metabolismo , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Neoplasias Pleurais/patologia , Adrenomedulina/genética , Animais , Apoptose , Biomarcadores Tumorais/genética , Western Blotting , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Movimento Celular , Proliferação de Células , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mesotelioma/genética , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos , Camundongos Nus , Neovascularização Patológica , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Proto-Oncogene Mas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/genética , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores de Adrenomedulina/genética , Receptores de Adrenomedulina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncotarget ; 6(10): 7536-53, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25924235

RESUMO

The cellular and molecular mechanisms by which adrenomedullin (AM) blockade suppresses tumor neovessels are not well defined. Herein, we show that AM blockade using anti-AM and anti-AM receptors antibodies targets vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), and induces regression of unstable nascent tumor neovessels. The underlying mechanism involved, and shown in vitro and in vivo in mice, is the disruption of the molecular engagement of the endothelial cell-specific junctional molecules vascular endothelial-cadherin (VE-cadherin)/ß-catenin complex. AM blockade increases endothelial cell permeability by inhibiting cell-cell contacts predominantly through disruption of VE-cadherin/ß-catenin/Akt signalling pathway, thereby leading to vascular collapse and regression of tumor neovessels. At a molecular level, we show that AM blockade induces tyrosine phosphorylation of VE-cadherin at a critical tyrosine, Tyr731, which is sufficient to prevent the binding of ß-catenin to the cytoplasmic tail of VE-cadherin leading to the inhibition of cell barrier function. Furthermore, we demonstrate activation of Src kinase by phosphorylation on Tyr416, supporting a role of Src to phosphorylate Tyr731-VE-cadherin. In this model, Src inhibition impairs αAM and αAMR-induced Tyr731-VE-cadherin phosphorylation in a dose-dependent manner, indicating that Tyr731-VE-cadherin phosphorylation state is dependent on Src activation. We found that AM blockade induces ß-catenin phosphorylation on Ser33/Ser37/Thr41 sites in both ECs and VSMCs both in vitro and in vivo in mice. These data suggest that AM blockade selectively induces regression of unstable tumor neovessels, through disruption of VE-cadherin signalling. Targeting AM system may present a novel therapeutic target to selectively disrupt assembly and induce regression of nascent tumor neovessels, without affecting normal stabilized vasculature.


Assuntos
Adrenomedulina/metabolismo , Endotélio Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , beta Catenina/metabolismo , Animais , Humanos , Camundongos , Camundongos Nus , Fosforilação , Transdução de Sinais
18.
Microvasc Res ; 95: 149-56, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25173589

RESUMO

Development and homeostasis of the vascular system requires integrin-promoting endothelial cell adhesion, migration and survival. Nowadays, integrins represent potential targets for pharmacological agents and open new avenues for the control of metastatic spread in the treatment of tumor malignancies. We have already reported that PIVL, a serine protease inhibitor isolated from Macrovipera lebetina venom, displays an anti-tumor effect through interference with integrin receptor function. Here, we report that PIVL inhibits human vascular endothelial cell adhesion and migration onto fibrinogen and fibronectin in a dose-dependent manner without any cytotoxicity. Furthermore, we show that PIVL increases microtubule dynamic instability in HMEC-1 transfected with EGFP-tagged α-tubulin. Using Matrigel™ and chick chorioallantoic membrane assays, we demonstrate that PIVL exhibits a strong anti-angiogenic effect both in vitro and in vivo. Interestingly, results herein reveal that the potent anti-angiogenic properties of PIVL are mediated by its RGD-like motif ((41)RGN(43)).


Assuntos
Inibidores da Angiogênese/farmacologia , Membrana Corioalantoide/irrigação sanguínea , Células Endoteliais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores de Serina Proteinase/farmacologia , Venenos de Víboras/química , Motivos de Aminoácidos , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Humanos , Integrina alfa5beta1/antagonistas & inibidores , Integrina alfa5beta1/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Integrina alfaVbeta3/metabolismo , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/isolamento & purificação , Fatores de Tempo , Transfecção
19.
Toxicon ; 92: 14-23, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25240295

RESUMO

We have purified the AaTX1 peptide from the Androctonus australis (Aa) scorpion venom, previously cloned and sequenced by Legros and collaborators in a venom gland cDNA library from Aa scorpion. AaTX1 belongs to the α-Ktx15 scorpion toxins family (αKTx15-4). Characterized members of this family share high sequence similarity and were found to block preferentially IA-type voltage-dependent K(+) currents in rat cerebellum granular cells in an irreversible way. In the current work, we studied the effects of native AaTX1 (nAaTX1) using whole-cell patch-clamp recordings of IA current in substantia nigra pars compacta dopaminergic neurons. At 250 nM, AaTX1 induces 90% decrease in IA current amplitude. Its activity was found to be comparable to that of rAmmTX3 (αKTx15-3), which differs by only one conserved (R/K) amino acid in the 19th position suggesting that the difference between R19 and K19 in AaTX1 and AmmTX3, respectively, may not be critical for the toxins' effects. Molecular docking of both toxins with Kv4.3 channel is in agreement with experimental data and suggests the implication of the functional dyade K27-Y36 in toxin-channel interactions. Since AaTX1 is not highly abundant in Aa venom, it was synthesized as well as AmmTX3. Synthetic peptides, native AaTX1 and rAmmTX3 peptides showed qualitatively the same pharmacological activity. Overall, these data identify a new biologically active toxin that belongs to a family of peptides active on Kv4.3 channel.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Neuropeptídeos/biossíntese , Neuropeptídeos/genética , Neuropeptídeos/toxicidade , Venenos de Escorpião/química , Canais de Potássio Shal/metabolismo , Sequência de Aminoácidos , Animais , Biblioteca Gênica , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Neuropeptídeos/análise , Técnicas de Patch-Clamp , Análise de Sequência de DNA , Homologia de Sequência , Substância Negra/citologia
20.
Chem Commun (Camb) ; 50(21): 2744-7, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24476638

RESUMO

Intermolecular radical 1,2-addition (IRA) of N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl)aminoxyl (SG1) based alkoxyamines onto activated olefins is used as a tool for peptide ligation. This strategy relies on simple peptide pre-derivatization to obtain (i) a SG1 nitroxide functionalized resin peptide at its N-terminus (SG1-peptide alkoxyamine), (ii) a vinyl functionalized peptide (either at its C-terminus or N-terminus), and does not require any coupling agents.


Assuntos
Aminas/química , Radicais Livres/química , Oligopeptídeos/química , Organofosfonatos/química , Alcenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA