Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Sci Rep ; 14(1): 14377, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909077

RESUMO

We present a formally exact and simulation-free approach for the normalization of X-ray Thomson scattering (XRTS) spectra based on the f-sum rule of the imaginary-time correlation function (ITCF). Our method works for any degree of collectivity, over a broad range of temperatures, and is applicable even in nonequilibrium situations. In addition to giving us model-free access to electronic correlations, this new approach opens up the intriguing possibility to extract a plethora of physical properties from the ITCF based on XRTS experiments.

2.
Rev Sci Instrum ; 94(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955555

RESUMO

A methodology for measuring x-ray continuum spectra of inertial confinement fusion (ICF) implosions is described. The method relies on the use of ConSpec, a high-throughput spectrometer using a highly annealed pyrolytic graphite crystal [MacDonald et al., J. Instrum. 14, P12009 (2019)], which measures the spectra in the ≃20-30 keV range. Due to its conical shape, the crystal is sagittally focusing a Bragg-reflected x-ray spectrum into a line, which enhances the recorded x-ray emission signal above the high neutron-induced background accompanying ICF implosions at the National Ignition Facility. To improve the overall measurement accuracy, the sensitivity of the spectrometer measured in an off-line x-ray laboratory setting was revised. The error analysis was expanded to include the accuracy of the off-line measurements, the effect of the neutron-induced background, as well as the influence of possible errors in alignment of the instrument to the ICF target. We demonstrate how the improved methodology is applied in the analysis of ConSpec data with examples of a relatively low-neutron-yield implosion using a tritium-hydrogen-deuterium mix as a fuel and a high-yield deuterium-tritium (DT) implosion producing high level of the background. In both cases, the shape of the measured spectrum agrees with the exponentially decaying spectral shape of bremsstrahlung emission to within ±10%. In the case of the high-yield DT experiment, non-monotonic deviations slightly exceeding the measurement uncertainties are observed and discussed.

3.
Nature ; 618(7964): 270-275, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225995

RESUMO

The gravitational pressure in many astrophysical objects exceeds one gigabar (one billion atmospheres)1-3, creating extreme conditions where the distance between nuclei approaches the size of the K shell. This close proximity modifies these tightly bound states and, above a certain pressure, drives them into a delocalized state4. Both processes substantially affect the equation of state and radiation transport and, therefore, the structure and evolution of these objects. Still, our understanding of this transition is far from satisfactory and experimental data are sparse. Here we report on experiments that create and diagnose matter at pressures exceeding three gigabars at the National Ignition Facility5 where 184 laser beams imploded a beryllium shell. Bright X-ray flashes enable precision radiography and X-ray Thomson scattering that reveal both the macroscopic conditions and the microscopic states. The data show clear signs of quantum-degenerate electrons in states reaching 30 times compression, and a temperature of around two million kelvins. At the most extreme conditions, we observe strongly reduced elastic scattering, which mainly originates from K-shell electrons. We attribute this reduction to the onset of delocalization of the remaining K-shell electron. With this interpretation, the ion charge inferred from the scattering data agrees well with ab initio simulations, but it is significantly higher than widely used analytical models predict6.

4.
Rev Sci Instrum ; 93(10): 103548, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319320

RESUMO

A new class of crystal shapes has been developed for x-ray spectroscopy of point-like or small (a few mm) emission sources. These optics allow for dramatic improvement in both achievable energy resolution and total throughput of the spectrometer as compared with traditional designs. This class of crystal shapes, collectively referred to as the Variable-Radii Spiral (VR-Spiral), utilize crystal shapes in which both the major and minor radii are variable. A crystal using this novel VR-Spiral shape has now been fabricated for high-resolution Extended X-ray Absorption Fine Structure (EXAFS) experiments targeting the Pb-L3 (13.0 keV) absorption edge at the National Ignition Facility. The performance of this crystal has been characterized in the laboratory using a microfocus x-ray source, showing that high-resolution high-throughput EXAFS spectra can be acquired using this geometry. Importantly, these successful tests show that the complex three-dimensional crystal shape is manufacturable with the required precision needed to realize the expected performance of better than 5 eV energy resolution while using a 30 mm high crystal. An improved generalized mathematical form for VR-Spiral shapes is also presented allowing improved optimization as compared to the first sinusoidal-spiral based design. This new formulation allows VR-Spiral spectrometers to be designed at any magnification with optimized energy resolution at all energies within the spectrometer bandwidth.

5.
Rev Sci Instrum ; 93(10): 103527, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319349

RESUMO

A high-resolution x-ray spectrometer was coupled with an ultrafast x-ray streak camera to produce time-resolved line shape spectra measured from hot, solid-density plasmas. A Bragg crystal was placed near laser-produced plasma to maximize throughput; alignment tolerances were established by ray tracing. The streak camera produced single-shot, time-resolved spectra, heavily sloped due to photon time-of-flight differences, with sufficient reproducibility to accumulate photon statistics. The images are time-calibrated by the slope of streaked spectra and dewarped to generate spectra emitted at different times defined at the source. The streaked spectra demonstrate the evolution of spectral shoulders and other features on ps timescales, showing the feasibility of plasma parameter measurements on the rapid timescales necessary to study high-energy-density plasmas.

6.
Perspect Public Health ; : 17579139221118771, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36226987

RESUMO

AIMS: The aims were (1) to analyse the cross-sectional and longitudinal associations between children's cardiorespiratory fitness (CRF) and health-related quality of life (HRQoL) and (2) to examine whether these associations were mediated by physical activity self-efficacy and physical activity enjoyment. METHODS: This study involved 383 children (10.0 ± 0.5 years) recruited from 20 primary schools in northwest England. Data were collected on two occasions 12 weeks apart. The number of laps completed in the 20-m Shuttle Run Test was used as the CRF indicator. HRQoL was assessed using the KIDSCREEN-10 questionnaire. Physical activity self-efficacy and enjoyment were assessed with the social-cognitive and Physical Activity Enjoyment Scale questionnaires, respectively. Linear mixed models with random intercepts (schools) assessed associations between CRF and HRQoL cross-sectionally, and longitudinally. Boot-strapped mediation procedures were performed, and indirect effects (IE) with 95% confidence intervals (CI) not including zero considered as statistically significant. Analyses were adjusted for sex, time of the year, socioeconomic status, waist-to-height ratio, maturation, and physical activity. RESULTS: CRF was cross-sectionally associated with HRQoL (ß = 0.09, 95% CI = 0.02, 0.16; p = .015). In the longitudinal analysis, CRF at baseline was associated with HRQoL at 12 weeks after additionally controlling for baseline HRQoL (ß = 0.08, 95% CI = 0.002; p = .15, p = .045). Cross-sectionally, physical activity self-efficacy and enjoyment acted individually as mediators in the relationship between CRF and HRQoL (IE = 0.069, 95% CI = 0.038; p = .105 and IE = 0.045, 95% CI = 0.016; p = .080, respectively). In the longitudinal analysis, physical activity self-efficacy showed a significant mediating effect (IE = 0.025, 95% CI = 0.004; p = .054). CONCLUSION: Our findings highlight the influence of CRF on children's psychological correlates of physical activity and their overall HRQoL.

7.
Rev Sci Instrum ; 93(9): 093510, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182490

RESUMO

A Monte Carlo technique has been developed to simulate the expected signal and the statistical noise of x-ray spectrometers that use streak cameras to achieve the time resolution required for ultrafast diagnostics of laser-generated plasmas. The technique accounts for statistics from both the photons incident on the streak camera's photocathode and the electrons emitted by the photocathode travelling through the camera's electron optics to the sensor. We use the technique to optimize the design of a spectrometer, which deduces the temporal history of electron temperature of the hotspot in an inertial confinement fusion implosion from its hard x-ray continuum emission spectra. The technique is general enough to be applied to any instrument using an x-ray streak camera.

8.
Rev Sci Instrum ; 93(9): 093517, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182496

RESUMO

K-shell x-ray emission spectroscopy is a standard tool used to diagnose the plasma conditions created in high-energy-density physics experiments. In the simplest approach, the emissivity-weighted average temperature of the plasma can be extracted by fitting an emission spectrum to a single temperature condition. It is known, however, that a range of plasma conditions can contribute to the measured spectra due to a combination of the evolution of the sample and spatial gradients. In this work, we define a parameterized model of the temperature distribution and use Markov Chain Monte Carlo sampling of the input parameters, yielding uncertainties in the fit parameters to assess the uniqueness of the inferred temperature distribution. We present the analysis of time-integrated S and Fe x-ray spectroscopic data from the Orion laser facility and demonstrate that while fitting each spectral region to a single temperature yields two different temperatures, both spectra can be fit simultaneously with a single temperature distribution. We find that fitting both spectral regions together requires a maximum temperature of 1310-70 +90 eV with significant contributions from temperatures down to 200 eV.

9.
Rev Sci Instrum ; 93(8): 083509, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050081

RESUMO

In this study, we present the absolute calibration of the conical crystal for the zinc spectrometer (ZSPEC), an x-ray spectrometer at the OMEGA laser facility at the Laboratory for Laser Energetics. The ZSPEC was originally designed to measure x-ray Thomson scattering using flat or cylindrically curved highly oriented pyrolytic graphite crystals centered around Zn He-alpha emission at 9 keV. To improve the useful spectral range and collection efficiency of the ZSPEC, a conical highly annealed pyrolytic graphite crystal was fabricated for the ZSPEC. The conically bent crystal in the Hall geometry produces a line focus perpendicular to the spectrometer axis, corresponding to the detector plane of electronic detectors at large scale laser facilities such as OMEGA, extending the useful range of the spectrometer to 7-11 keV. Using data collected using a microfocus Mo x-ray source, we determine important characteristics of ZSPEC such as the dispersion, spatial resolution, and absolute sensitivity of the instrument. A ray-trace model of ZSPEC provides another point of agreement in calculations of the ZSPEC dispersion and crystal response.

10.
Rev Sci Instrum ; 92(9): 093904, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598494

RESUMO

A novel high-resolution x-ray spectrometer for point-like emission sources has been developed using a crystal shape having both a variable major and a variable minor radius of curvature. This variable-radii sinusoidal spiral spectrometer (VR-Spiral) allows three common spectrometer design goals to be achieved simultaneously: 1. reduction of aberrations and improved spectral (energy) resolution, 2. reduction of source size broadening, and 3. use of large crystals to improve total throughput. The VR-Spiral concept and its application to practical spectrometer design are described in detail. This concept is then used to design a spectrometer for an extreme extended x-ray absorption fine structure experiment at the National Ignition Facility looking at the Pb L3 absorption edge at 13.0352 keV. The expected performance of this VR-Spiral spectrometer, both in terms of energy resolution and spatial resolution, is evaluated through the use of a newly developed raytracing tool, xicsrt. Finally, the expected performance of the VR-Spiral concept is compared to that of spectrometers based on conventional toroidal and variable-radii toroidal crystal geometries showing a greatly improved energy resolution.

11.
Rev Sci Instrum ; 92(4): 043531, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243385

RESUMO

This paper describes a new class of focusing crystal forms for the x-ray Bragg crystal spectroscopy of small, point-like, x-ray sources. These new crystal forms are designed with the aid of sinusoidal spirals, a family of curves, whose shapes are defined by only one parameter, which can assume any real value. The potential of the sinusoidal spirals for the design x-ray crystal spectrometers is demonstrated with the design of a toroidally bent crystal of varying major and minor radii for measurements of the extended x-ray absorption fine structure near the Ta-L3 absorption edge at the National Ignition Facility.

12.
Rev Sci Instrum ; 92(2): 023509, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33648146

RESUMO

We present absolute throughput analysis of several crystals for the Orion High-REsolution X-ray (OHREX) imaging crystal spectrometer using ray tracing and experimental measurements. The OHREX spectrometer is a high-resolution x-ray spectrometer designed to measure spectral line shapes at the Orion laser facility. The spectrometer is fielded with up to two spherical crystals simultaneously covering two independent spectral ranges. Each crystal has a nominal radius of curvature of R = 67.2 cm and is fielded at a nominal Bragg angle of 51.3°. To cover different bands of interest, several different crystals are available, including Ge (111), KAP, and several cuts of quartz, whose resolving power λ/Δλ exceeds 10 000. The calibrated response of the available crystals has previously been reported from measurements at the EBIT-I electron beam ion trap at Lawrence Livermore National Laboratory. Here, we model the absolute throughput of each crystal using ray tracing and verify the results using experimental data for the quartz (101¯1) crystal.

13.
Nat Commun ; 11(1): 2620, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457297

RESUMO

The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon-hydrogen mixture at a pressure of ~150 GPa and a temperature of ~5000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of [Formula: see text]% of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.

14.
Phys Rev Lett ; 122(22): 225001, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283266

RESUMO

The creation and disruption of inertially collimated plasma flows are investigated through experiment, simulation, and analytical modeling. Supersonic plasma jets are generated by laser-irradiated plastic cones and characterized by optical interferometry measurements. Targets are magnetized with a tunable B field with strengths of up to 5 T directed along the axis of jet propagation. These experiments demonstrate a hitherto unobserved phenomenon in the laboratory, the magnetic disruption of inertially confined plasma jets. This occurs due to flux compression on axis during jet formation and can be described using a Lagrangian-cylinder model of plasma evolution implementing finite resistivity. The basic physical mechanisms driving the dynamics of these systems are described by this model and then compared with two-dimensional radiation-magnetohydrodynamic simulations. Experimental, computational, and analytical results discussed herein suggest that contemporary models underestimate the electrical conductivity necessary to drive the amount of flux compression needed to explain observations of jet disruption.

15.
Sci Rep ; 9(1): 4196, 2019 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862904

RESUMO

We investigated the high-pressure behavior of polyethylene (CH2) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A2/m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.

16.
Rev Sci Instrum ; 89(10): 10F119, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399669

RESUMO

At large laser faculties, such as OMEGA and the National Ignition Facility (NIF), x-ray spectrometers are provided by the facility to diagnose plasma conditions or monitor backlighters. Often the calibration of these spectrometers is unknown or out of date. As a remedy to this situation, we present a simple ray trace method to calibrate flat crystal spectrometers using only basic information regarding the optical design of the spectrometer. This model is then used to output photometric throughput estimates, dispersion, solid angle, and spectral resolution estimates. This model is applied to the mono angle crystal spectrometer and Super Snout I at the NIF and the X-Ray Spectrometer at the OMEGA laser facility.

17.
Rev Sci Instrum ; 89(10): 10G111, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399716

RESUMO

We have developed and fielded a new x-ray pinhole-imaging snout that exploits time-resolved penumbral imaging of low-emission hot spots in capsule implosion experiments at the National Ignition Facility. We report results for a series of indirectly driven Be capsule implosions that aim at measuring x-ray Thomson scattering (XRTS) spectra at extreme density conditions near stagnation. In these implosions, x-ray emission at stagnation is reduced by 100-1000× compared to standard inertial confinement fusion (ICF) implosions to mitigate undesired continuum background in the XRTS spectra. Our snout design not only enables measurements of peak x-ray emission times, t o , where standard ICF diagnostics would not record any signal, but also allows for inference of hot spot shapes. Measurement of t o is crucial to account for shot-to-shot variations in implosion velocity and therefore to benchmark the achieved plasma conditions between shots and against radiation hydrodynamic simulations. Additionally, we used differential filtering to infer a hot spot temperature of 520 ± 80 eV, which is in good agreement with predictions from radiation hydrodynamic simulations. We find that, despite fluctuations of the x-ray flash intensity of up to 5×, the emission time history is similar from shot to shot and slightly asymmetric with respect to peak x-ray emission.

18.
Rev Sci Instrum ; 89(10): 10F109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399805

RESUMO

We are developing a long-duration K-α x-ray source at the Omega laser facility. Such sources are important for x-ray scattering measurements at small scattering angles where high spectral resolution is required. To date, He-α x-ray sources are the most common probes in scattering experiments, using ns-class lasers to heat foils to keV temperatures, resulting in K-shell emission from He-like charge states. The He-α spectrum can be broadened by emission from multiple charge states and lines (e.g., He-like, Li-like, Be-like). Here, we combine the long duration of He-α sources with the narrow spectral bandwidth of cold K-α emission. A Ge foil is irradiated by the Omega laser, producing principally Ge He-α emission, which pumps Zn K-α emission at 8.6 keV from a nearby Zn layer. Using this technique, we demonstrate a long-duration Zn K-α source suitable for scattering measurements. Our experimental results show a 60% reduction in spectral bandwidth compared to a standard Zn He-α source, significantly improving the measurement precision of scattering experiments with small inelastic shifts.

19.
Rev Sci Instrum ; 89(10): 10F105, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399938

RESUMO

We present an experimental design for a radiation hydrodynamics experiment at the National Ignition Facility that measures the electron temperature of a shocked region using the x-ray Thomson scattering technique. Previous National Ignition Facility experiments indicate a reduction in Rayleigh-Taylor instability growth due to high energy fluxes, compared to the shocked energy flux, from radiation and electron heat conduction. In order to better quantify the effects of these energy fluxes, we modified the previous experiment to allow for non-collective x-ray Thomson scattering to measure the electron temperature. Photometric calculations combined with synthetic scattering spectra demonstrate an estimated noise.

20.
Phys Rev Lett ; 121(2): 025001, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085737

RESUMO

We have developed an experimental platform for the National Ignition Facility that uses spherically converging shock waves for absolute equation-of-state (EOS) measurements along the principal Hugoniot. In this Letter, we present one indirect-drive implosion experiment with a polystyrene sample that employs radiographic compression measurements over a range of shock pressures reaching up to 60 Mbar (6 TPa). This significantly exceeds previously published results obtained on the Nova laser [R. Cauble et al., Phys. Rev. Lett. 80, 1248 (1998)PRLTAO0031-900710.1103/PhysRevLett.80.1248] at a strongly improved precision, allowing us to discriminate between different EOS models. We find excellent agreement with Kohn-Sham density-functional-theory-based molecular dynamics simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA