Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-2): 025204, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491565

RESUMO

In this work we present the design of the first controlled fusion laboratory experiment to reach target gain G>1 N221204 (5 December 2022) [Phys. Rev. Lett. 132, 065102 (2024)10.1103/PhysRevLett.132.065102], performed at the National Ignition Facility, where the fusion energy produced (3.15 MJ) exceeded the amount of laser energy required to drive the target (2.05 MJ). Following the demonstration of ignition according to the Lawson criterion N210808, experiments were impacted by nonideal experimental fielding conditions, such as increased (known) target defects that seeded hydrodynamic instabilities or unintentional low-mode asymmetries from nonuniformities in the target or laser delivery, which led to reduced fusion yields less than 1 MJ. This Letter details design changes, including using an extended higher-energy laser pulse to drive a thicker high-density carbon (also known as diamond) capsule, that led to increased fusion energy output compared to N210808 as well as improved robustness for achieving high fusion energies (greater than 1 MJ) in the presence of significant low-mode asymmetries. For this design, the burnup fraction of the deuterium and tritium (DT) fuel was increased (approximately 4% fuel burnup and a target gain of approximately 1.5 compared to approximately 2% fuel burnup and target gain approximately 0.7 for N210808) as a result of increased total (DT plus capsule) areal density at maximum compression compared to N210808. Radiation-hydrodynamic simulations of this design predicted achieving target gain greater than 1 and also the magnitude of increase in fusion energy produced compared to N210808. The plasma conditions and hotspot power balance (fusion power produced vs input power and power losses) using these simulations are presented. Since the drafting of this manuscript, the results of this paper have been replicated and exceeded (N230729) in this design, together with a higher-quality diamond capsule, setting a new record of approximately 3.88MJ of fusion energy and fusion energy target gain of approximately 1.9.

2.
Phys Rev Lett ; 132(6): 065104, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394572

RESUMO

As fusion experiments at the National Ignition Facility (NIF) approach and exceed breakeven, energy from the burning capsule is predicted to couple to the gold walls and reheat the hohlraum. On December 5, 2022, experiment N221204 exceeded target breakeven, historically achieving 3.15 MJ of fusion energy from 2.05 MJ of laser drive; for the first time, energy from the igniting capsule reheated the hohlraum beyond the peak laser-driven radiation temperature of 313 eV to a peak of 350 eV, in less than half a nanosecond. This reheating effect has now been unambiguously observed by the two independent Dante calorimeter systems across multiple experiments, and is shown to result from reheating of the remnant tungsten-doped ablator by the exploding core, which is heated by alpha deposition.

3.
Phys Rev Lett ; 132(6): 065103, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38394600

RESUMO

Fusion "scientific breakeven" (i.e., unity target gain G_{target}, total fusion energy out > laser energy input) has been achieved for the first time (here, G_{target}∼1.5). This Letter reports on the physics principles of the design changes that led to the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce target gain greater than unity and exceeded the previously obtained conditions needed for ignition by the Lawson criterion. Key elements of the success came from reducing "coast time" (the time duration between the end of the laser pulse and implosion peak compression) and maximizing the internal energy delivered to the "hot spot" (the yield producing part of the fusion fuel). The link between coast time and maximally efficient conversion of kinetic energy into internal energy is explained. The energetics consequences of asymmetry and hydrodynamic-induced mixing were part of high-yield big radius implosion design experimental and design strategy. Herein, it is shown how asymmetry and mixing consolidate into one key relationship. It is shown that mixing distills into a kinetic energy cost similar to the impact of implosion asymmetry, shifting the threshold for ignition to higher implosion kinetic energy-a factor not normally included in most statements of the generalized Lawson criterion, but the key needed modifications clearly emerge.

4.
Phys Rev E ; 107(1-2): 015202, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797905

RESUMO

In order to understand how close current layered implosions in indirect-drive inertial confinement fusion are to ignition, it is necessary to measure the level of alpha heating present. To this end, pairs of experiments were performed that consisted of a low-yield tritium-hydrogen-deuterium (THD) layered implosion and a high-yield deuterium-tritium (DT) layered implosion to validate experimentally current simulation-based methods of determining yield amplification. The THD capsules were designed to reduce simultaneously DT neutron yield (alpha heating) and maintain hydrodynamic similarity with the higher yield DT capsules. The ratio of the yields measured in these experiments then allowed the alpha heating level of the DT layered implosions to be determined. The level of alpha heating inferred is consistent with fits to simulations expressed in terms of experimentally measurable quantities and enables us to infer the level of alpha heating in recent high-performing implosions.

5.
Phys Rev Lett ; 129(27): 275001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638294

RESUMO

We present measurements of ice-ablator mix at stagnation of inertially confined, cryogenically layered capsule implosions. An ice layer thickness scan with layers significantly thinner than used in ignition experiments enables us to investigate mix near the inner ablator interface. Our experiments reveal for the first time that the majority of atomically mixed ablator material is "dark" mix. It is seeded by the ice-ablator interface instability and located in the relatively cooler, denser region of the fuel assembly surrounding the fusion hot spot. The amount of dark mix is an important quantity as it is thought to affect both fusion fuel compression and burn propagation when it turns into hot mix as the burn wave propagates through the initially colder fuel region surrounding an igniting hot spot. We demonstrate a significant reduction in ice-ablator mix in the hot-spot boundary region when we increase the initial ice layer thickness.

6.
Phys Rev E ; 101(3-1): 033205, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32290020

RESUMO

We present direct measurements of electron temperature variations within an inertially confined deuterium-tritium plasma caused by localized mix of higher-Z materials into the central hot spot. The data are derived from newly developed differentially filtered penumbral imaging of the bremsstrahlung continuum emission. Our analysis reveals distinct localized emitting features in the stagnated hot-spot plasma, and we infer spatial variations in the electron temperature: the mixed region is 660±130eV colder than the surrounding hot-spot plasma at 3.26±0.11keV. Our analysis of the energy flow shows that we measure approximately steady-state conditions where the radiative losses in the mix region are balanced by heat conduction from the surrounding hot deuterium-tritium plasma.

7.
Phys Rev Lett ; 121(9): 095002, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-30230893

RESUMO

We report on the first multilocation electron temperature (T_{e}) and flow measurements in an ignition hohlraum at the National Ignition Facility using the novel technique of mid-Z spectroscopic tracer "dots." The measurements define a low resolution "map" of hohlraum plasma conditions and provide a basis for the first multilocation tests of particle and energy transport physics in a laser-driven x-ray cavity. The data set is consistent with classical heat flow near the capsule but reduced heat flow near the laser entrance hole. We evaluate the role of kinetic effects, self-generated magnetic fields, and instabilities in causing spatially dependent heat transport in the hohlraum.

8.
Nat Commun ; 9(1): 1564, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674695

RESUMO

Energy-transport effects can alter the structure that develops as a supernova evolves into a supernova remnant. The Rayleigh-Taylor instability is thought to produce structure at the interface between the stellar ejecta and the circumstellar matter, based on simple models and hydrodynamic simulations. Here we report experimental results from the National Ignition Facility to explore how large energy fluxes, which are present in supernovae, affect this structure. We observed a reduction in Rayleigh-Taylor growth. In analyzing the comparison with supernova SN1993J, a Type II supernova, we found that the energy fluxes produced by heat conduction appear to be larger than the radiative energy fluxes, and large enough to have dramatic consequences. No reported astrophysical simulations have included radiation and heat conduction self-consistently in modeling supernova remnants and these dynamics should be noted in the understanding of young supernova remnants.

9.
Phys Rev Lett ; 117(22): 225001, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925731

RESUMO

Using a large volume high-energy-density fluid shear experiment (8.5 cm^{3}) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

10.
Rev Sci Instrum ; 86(10): 103511, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26520959

RESUMO

Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums. If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.

11.
Rev Sci Instrum ; 85(11): 11D621, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430197

RESUMO

We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 µm, cosputtered backlighter target to simultaneously produce both Ni and Zn Heα emission. A Ni picket fence filter, 500 µm wide bars and troughs, is then placed in front of the detector to pass only the Ni Heα emission in the bar region and both energies in the trough region thereby spatially multiplexing the two radiographs on a single image. Initial experimental results testing the backlighter spectrum are presented along with simulated images showing the calculated radiographic images though the nickel picket fence filter which are used to measure the mix width in an accelerated nickel foam.

12.
Phys Rev Lett ; 112(10): 105003, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24679301

RESUMO

Indirect drive experiments at the National Ignition Facility are designed to achieve fusion by imploding a fuel capsule with x rays from a laser-driven hohlraum. Previous experiments have been unable to determine whether a deficit in measured ablator implosion velocity relative to simulations is due to inadequate models of the hohlraum or ablator physics. ViewFactor experiments allow for the first time a direct measure of the x-ray drive from the capsule point of view. The experiments show a 15%-25% deficit relative to simulations and thus explain nearly all of the disagreement with the velocity data. In addition, the data from this open geometry provide much greater constraints on a predictive model of laser-driven hohlraum performance than the nominal ignition target.

13.
J Microsc ; 227(Pt 2): 110-7, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17845706

RESUMO

Chromatography is a widely used separation unit operation for separating nanomaterials such as proteins and enzymes, quantum dots and carbon nanotubes. An understanding of the chromatographic stationary phase on a nanoscale would be extremely helpful in improving the process and developing efficient and new materials. This study is an attempt to characterize the stationary phase in its swollen wet state using environmental scanning electron microscope (ESEM) and atomic force microscopy (AFM). Observation of the wet beads using ESEM is limited to a micron-range resolution. However, AFM can be used in wet mode to characterize the stationary phase in both wet and dry states with nanometric resolution. In the swollen state, microscale cracks were observed on the surface and this may explain the high mass transfer rate and lower back pressures of the stationary phase. The structures on the surface of the stationary phase depict that the micron-sized beads may be composed of nanometric beads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA