Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Transplantation ; 108(5): 1043-1052, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494468

RESUMO

The 2023 Joint Annual Congress of the International Liver Transplantation Society, European Liver and Intestine Transplant Association, and Liver Intensive Care Group of Europe were held in Rotterdam, the Netherlands, from May 3 to 6, 2023. This year, all speakers were invited to attend the Congress in person for the first time since the COVID-19 pandemic. The congress was attended by 1159 registered delegates from 54 countries representing 5 continents, with the 10 countries comprising the bulk of the delegates. Of the 647 abstracts initially submitted, 542 were eventually presented at the meeting, coming from 38 countries (mainly North America, Europe, and Asia) and 85% of them (462 abstracts) came from only 10 countries. Fifty-three (9.8%) abstracts, originated from 17 countries, were submitted under the Basic/Translational Scientific Research category, a similar percentage as in 2022. Abstracts presented at the meeting were classified as (1) ischemia and reperfusion injury, (2) machine perfusion, (3) bioengineering and liver regeneration, (4) transplant oncology, (5) novel biomarkers in liver transplantation, (6) liver immunology (rejection and tolerance), and (7) artificial intelligence and machine learning. Finally, we evaluated the number of abstracts commented in the Basic and Translational Research Committee-International Liver Transplantation Society annual reports over the past 5 y that resulted in publications in peer-reviewed journals to measure their scientific impact in the field of liver transplantation.


Assuntos
Transplante de Fígado , Pesquisa Translacional Biomédica , Transplante de Fígado/tendências , Humanos , Pesquisa Translacional Biomédica/organização & administração , Pesquisa Translacional Biomédica/tendências , COVID-19/epidemiologia , SARS-CoV-2/imunologia , Sociedades Médicas , Congressos como Assunto
2.
Hepatology ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536042

RESUMO

BACKGROUND AND AIMS: It is not known why severe cystic fibrosis (CF) liver disease (CFLD) with portal hypertension occurs in only ~7% of people with CF. We aimed to identify genetic modifiers for severe CFLD to improve understanding of disease mechanisms. APPROACH AND RESULTS: Whole-genome sequencing was available in 4082 people with CF with pancreatic insufficiency (n = 516 with severe CFLD; n = 3566 without CFLD). We tested ~15.9 million single nucleotide polymorphisms (SNPs) for association with severe CFLD versus no-CFLD, using pre-modulator clinical phenotypes including (1) genetic variant ( SERPINA1 ; Z allele) previously associated with severe CFLD; (2) candidate SNPs (n = 205) associated with non-CF liver diseases; (3) genome-wide association study of common/rare SNPs; (4) transcriptome-wide association; and (5) gene-level and pathway analyses. The Z allele was significantly associated with severe CFLD ( p = 1.1 × 10 -4 ). No significant candidate SNPs were identified. A genome-wide association study identified genome-wide significant SNPs in 2 loci and 2 suggestive loci. These 4 loci contained genes [significant, PKD1 ( p = 8.05 × 10 -10 ) and FNBP1 ( p = 4.74 × 10 -9 ); suggestive, DUSP6 ( p = 1.51 × 10 -7 ) and ANKUB1 ( p = 4.69 × 10 -7 )] relevant to severe CFLD pathophysiology. The transcriptome-wide association identified 3 genes [ CXCR1 ( p = 1.01 × 10 -6 ) , AAMP ( p = 1.07 × 10 -6 ), and TRBV24 ( p = 1.23 × 10 -5 )] involved in hepatic inflammation and innate immunity. Gene-ranked analyses identified pathways enriched in genes linked to multiple liver pathologies. CONCLUSION: These results identify loci/genes associated with severe CFLD that point to disease mechanisms involving hepatic fibrosis, inflammation, innate immune function, vascular pathology, intracellular signaling, actin cytoskeleton and tight junction integrity and mechanisms of hepatic steatosis and insulin resistance. These discoveries will facilitate mechanistic studies and the development of therapeutics for severe CFLD.

3.
J Hepatol ; 80(5): 730-743, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38199298

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is an immune-mediated cholestatic liver disease for which there is an unmet need to understand the cellular composition of the affected liver and how it underlies disease pathogenesis. We aimed to generate a comprehensive atlas of the PSC liver using multi-omic modalities and protein-based functional validation. METHODS: We employed single-cell and single-nucleus RNA sequencing (47,156 cells and 23,000 nuclei) and spatial transcriptomics (one sample by 10x Visium and five samples with Nanostring GeoMx DSP) to profile the cellular ecosystem in 10 PSC livers. Transcriptomic profiles were compared to 24 neurologically deceased donor livers (107,542 cells) and spatial transcriptomics controls, as well as 18,240 cells and 20,202 nuclei from three PBC livers. Flow cytometry was performed to validate PSC-specific differences in immune cell phenotype and function. RESULTS: PSC explants with parenchymal cirrhosis and prominent periductal fibrosis contained a population of cholangiocyte-like hepatocytes that were surrounded by diverse immune cell populations. PSC-associated biliary, mesenchymal, and endothelial populations expressed chemokine and cytokine transcripts involved in immune cell recruitment. Additionally, expanded CD4+ T cells and recruited myeloid populations in the PSC liver expressed the corresponding receptors to these chemokines and cytokines, suggesting potential recruitment. Tissue-resident macrophages, by contrast, were reduced in number and exhibited a dysfunctional and downregulated inflammatory response to lipopolysaccharide and interferon-γ stimulation. CONCLUSIONS: We present a comprehensive atlas of the PSC liver and demonstrate an exhaustion-like phenotype of myeloid cells and markers of chronic cytokine expression in late-stage PSC lesions. This atlas expands our understanding of the cellular complexity of PSC and has potential to guide the development of novel treatments. IMPACT AND IMPLICATIONS: Primary sclerosing cholangitis (PSC) is a rare liver disease characterized by chronic inflammation and irreparable damage to the bile ducts, which eventually results in liver failure. Due to a limited understanding of the underlying pathogenesis of disease, treatment options are limited. To address this, we sequenced healthy and diseased livers to compare the activity, interactions, and localization of immune and non-immune cells. This revealed that hepatocytes lining PSC scar regions co-express cholangiocyte markers, whereas immune cells infiltrate the scar lesions. Of these cells, macrophages, which typically contribute to tissue repair, were enriched in immunoregulatory genes and demonstrated a lack of responsiveness to stimulation. These cells may be involved in maintaining hepatic inflammation and could be a target for novel therapies.


Assuntos
Colangite Esclerosante , Humanos , Cicatriz/metabolismo , Cicatriz/patologia , Ecossistema , Fígado/patologia , Cirrose Hepática/patologia , Citocinas/metabolismo , Inflamação/metabolismo , Perfilação da Expressão Gênica
4.
iScience ; 26(11): 108213, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38026201

RESUMO

The large size and vascular accessibility of the laboratory rat (Rattus norvegicus) make it an ideal hepatic animal model for diseases that require surgical manipulation. Often, the disease susceptibility and outcomes of inflammatory pathologies vary significantly between strains. This study uses single-cell transcriptomics to better understand the complex cellular network of the rat liver, as well as to unravel the cellular and molecular sources of inter-strain hepatic variation. We generated single-cell and single-nucleus transcriptomic maps of the livers of healthy Dark Agouti and Lewis rat strains and developed a factor analysis-based bioinformatics analysis pipeline to study data covariates, such as strain and batch. Using this approach, we discovered transcriptomic variation within the hepatocyte and myeloid populations that underlie distinct cell states between rat strains. This finding will help provide a reference for future investigations on strain-dependent outcomes of surgical experiment models.

5.
Research (Wash D C) ; 6: 0236, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808178

RESUMO

Platelets are small, versatile blood cells that are critical for hemostasis/thrombosis. Local platelet accumulation is a known contributor to proinflammation in various disease states. However, the anti-inflammatory/immunosuppressive potential of platelets has been poorly explored. Here, we uncovered, unexpectedly, desialylated platelets (dPLTs) down-regulated immune responses against both platelet-associated and -independent antigen challenges. Utilizing multispectral photoacoustic tomography, we tracked dPLT trafficking to gut vasculature and an exclusive Kupffer cell-mediated dPLT clearance in the liver, a process that we identified to be synergistically dependent on platelet glycoprotein Ibα and hepatic Ashwell-Morell receptor. Mechanistically, Kupffer cell clearance of dPLT potentiated a systemic immunosuppressive state with increased anti-inflammatory cytokines and circulating CD4+ regulatory T cells, abolishable by Kupffer cell depletion. Last, in a clinically relevant model of hemophilia A, presensitization with dPLT attenuated anti-factor VIII antibody production after factor VIII ( infusion. As platelet desialylation commonly occurs in daily-aged and activated platelets, these findings open new avenues toward understanding immune homeostasis and potentiate the therapeutic potential of dPLT and engineered dPLT transfusions in controlling autoimmune and alloimmune diseases.

6.
Science ; 381(6662): eabq5202, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37676943

RESUMO

Kupffer cells (KCs) are localized in liver sinusoids but extend pseudopods to parenchymal cells to maintain their identity and serve as the body's central bacterial filter. Liver cirrhosis drastically alters vascular architecture, but how KCs adapt is unclear. We used a mouse model of liver fibrosis and human tissue to examine immune adaptation. Fibrosis forced KCs to lose contact with parenchymal cells, down-regulating "KC identity," which rendered them incapable of clearing bacteria. Commensals stimulated the recruitment of monocytes through CD44 to a spatially distinct vascular compartment. There, recruited monocytes formed large aggregates of multinucleated cells (syncytia) that expressed phenotypical KC markers and displayed enhanced bacterial capture ability. Syncytia formed via CD36 and were observed in human cirrhosis as a possible antimicrobial defense that evolved with fibrosis.


Assuntos
Infecções Transmitidas por Sangue , Células Gigantes , Células de Kupffer , Cirrose Hepática , Animais , Humanos , Camundongos , Células Gigantes/imunologia , Células Gigantes/microbiologia , Células de Kupffer/imunologia , Células de Kupffer/microbiologia , Cirrose Hepática/imunologia , Cirrose Hepática/microbiologia , Cirrose Hepática/patologia , Infecções Transmitidas por Sangue/imunologia , Modelos Animais de Doenças
7.
Histopathology ; 83(4): 559-568, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37488782

RESUMO

AIMS: ATP-binding cassette transporters are important proteins in regulating bile constituent transport between hepatocytes and the bile canalicular system. Dysfunctional transporters lead to accumulation of toxic bile components within hepatocytes or the biliary system, known as cholestasis, resulting in liver damage. It has been previously reported that two particular ATP-binding cassette transporters, ABCB4 and ABCB11, have altered expression in patients with primary sclerosing cholangitis (PSC). Interested in further analysis of expression patterns of ATP-binding cassette transporters in PSC patients, we investigated liver samples from 201 patients, including 43 patients with PSC and 51 patients with primary biliary cholangitis patients (PBC). In addition to ABCB4 and ABCB11, we also included other ATP-binding cassette transporters, to determine if upregulation of ABCB4 and ABCB11 is specifically found in the liver of patients with PSC. METHODS AND RESULTS: Retrospectively, formalin-fixed and paraffin-embedded liver biopsies, resections, and explants were selected to investigate the expression of ABCB1, ABCB4, ABCB11, ABCG5/8, and FXR1 using nanoString nCounter and immunohistochemistry for validation of differently expressed transporters seen in PSC liver samples in comparison to non-PSC liver specimens. Strikingly, ABCB4 was the only ATP-binding cassette transporter showing increased gene and protein expression in hepatocytes of PSC livers when compared to non-PSC liver specimens. Furthermore, ABCB4 protein expression also correlated with disease stage in PSC. CONCLUSION: Our study concluded that altered ABCB4 expression is specifically seen in liver specimens of PSC patients. Therefore, quantitative ABCB4 analysis may be an additional useful tool for the histopathological diagnosis of PSC to distinguish this entity from other cholangiopathies.


Assuntos
Colangite Esclerosante , Hepatopatias , Humanos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colangite Esclerosante/diagnóstico , Colangite Esclerosante/genética , Estudos Retrospectivos , Proteínas de Ligação a RNA
8.
Nature ; 618(7963): 102-109, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225985

RESUMO

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Assuntos
Antinematódeos , Tylenchoidea , Animais , Humanos , Antinematódeos/química , Antinematódeos/metabolismo , Antinematódeos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Tylenchoidea/efeitos dos fármacos , Tylenchoidea/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Tiazóis/farmacologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/parasitologia , Doenças das Plantas , Especificidade da Espécie , Especificidade por Substrato
9.
J Viral Hepat ; 30(1): 64-72, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36302162

RESUMO

Individuals who spontaneously clear hepatitis C virus (HCV) infection have demonstrated evidence of partial protective immunity, whereas treatment-induced clearance provides little or no protection against reinfection. We aimed to investigate whether treatment of acute HCV infection with direct-acting antivirals (DAA) prevents establishment of, or reverses, T-cell exhaustion, leading to a virus-specific T-cell immune profile more similar to that seen in spontaneous clearance. The magnitude and breadth of HCV-specific T-cell responses before and after DAA or interferon-based therapy in acute or chronic HCV were compared to those of participants with spontaneous clearance of infection, using Enzyme-linked Immunospot (ELISPOT). PBMCs were available for 55 patients comprising 4 groups: spontaneous clearance (n = 17), acute interferon (n = 14), acute DAA (n = 13) and chronic DAA (n = 11). After controlling for sex, the magnitude of post-treatment HCV-specific responses after acute DAA treatment was greater than after chronic DAA or acute IFN treatment and similar to those found in spontaneous clearers. However, spontaneous clearers responded to more HCV peptide pools indicating greater breadth of response. In conclusion, early treatment with DAAs may prevent or reverse some degree of immune exhaustion and result in stronger HCV-specific responses post-treatment. However, individuals with spontaneous clearance had broader HCV-specific responses.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Hepacivirus , Antivirais/uso terapêutico , Antivirais/farmacologia , Hepatite C Crônica/tratamento farmacológico , Interferons/uso terapêutico , Imunidade
10.
Nat Commun ; 13(1): 7634, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496458

RESUMO

Knowledge of the transcriptional programs underpinning the functions of human kidney cell populations at homeostasis is limited. We present a single-cell perspective of healthy human kidney from 19 living donors, with equal contribution from males and females, profiling the transcriptome of 27677 cells to map human kidney at high resolution. Sex-based differences in gene expression within proximal tubular cells were observed, specifically, increased anti-oxidant metallothionein genes in females and aerobic metabolism-related genes in males. Functional differences in metabolism were confirmed in proximal tubular cells, with male cells exhibiting higher oxidative phosphorylation and higher levels of energy precursor metabolites. We identified kidney-specific lymphocyte populations with unique transcriptional profiles indicative of kidney-adapted functions. Significant heterogeneity in myeloid cells was observed, with a MRC1+LYVE1+FOLR2+C1QC+ population representing a predominant population in healthy kidney. This study provides a detailed cellular map of healthy human kidney, and explores the complexity of parenchymal and kidney-resident immune cells.


Assuntos
Receptor 2 de Folato , Rim , Feminino , Humanos , Masculino , Rim/metabolismo , Transcriptoma , Metalotioneína/genética , Metalotioneína/metabolismo , Células Mieloides/metabolismo , Perfilação da Expressão Gênica , Análise de Célula Única , Receptor 2 de Folato/metabolismo
11.
bioRxiv ; 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36324805

RESUMO

The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.

12.
Nat Cell Biol ; 24(10): 1487-1498, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36109670

RESUMO

The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications.


Assuntos
Hepatócitos , Fígado , Humanos , Fígado/metabolismo , Hepatócitos/metabolismo , Diferenciação Celular , Organoides , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Semin Liver Dis ; 42(3): 250-270, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36008091

RESUMO

The human liver is a complex organ made up of multiple specialized cell types that carry out key physiological functions. An incomplete understanding of liver biology limits our ability to develop therapeutics to prevent chronic liver diseases, liver cancers, and death as a result of organ failure. Recently, single-cell modalities have expanded our understanding of the cellular phenotypic heterogeneity and intercellular cross-talk in liver health and disease. This review summarizes these findings and looks forward to highlighting new avenues for the application of single-cell genomics to unravel unknown pathogenic pathways and disease mechanisms for the development of new therapeutics targeting liver pathology. As these technologies mature, their integration into clinical data analysis will aid in patient stratification and in developing treatment plans for patients suffering from liver disease.


Assuntos
Hepatopatias , Hepatócitos/metabolismo , Humanos , Hepatopatias/metabolismo
15.
J Heart Lung Transplant ; 41(11): 1556-1569, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691795

RESUMO

BACKGROUND: Lung transplant recipients experience episodes of immune-mediated acute lung allograft dysfunction (ALAD). ALAD episodes are a risk factor for chronic lung allograft dysfunction (CLAD), the major cause of death after lung transplantation. Our objective was to determine key cellular elements in dysfunctional lung allografts, with a focus on macrophages. METHODS: We have applied single-cell RNA sequencing (scRNAseq) to bronchoalveolar lavage cells from stable and ALAD patients and to cells from explanted CLAD lung tissue. RESULTS: We identified 2 alveolar macrophage (AM) subsets uniquely represented in ALAD. Using pathway analysis and differentially expressed genes, we annotated these as pro-inflammatory interferon-stimulated gene (ISG) and metallothionein-mediated inflammatory (MT) AMs. Functional analysis of an independent set of AMs in vitro revealed that ALAD AMs exhibited a higher expression of CXCL10, a marker of ISG AMs, and increased secretion of pro-inflammatory cytokines compared to AMs from stable patients. Using publicly available bronchoalveolar lavage scRNAseq datasets, we found that ISG and MT AMs are associated with more severe inflammation in COVID-19 patients. Analysis of cells from 4 explanted CLAD lungs revealed similar macrophage populations. Donor and recipient cells were identified using expressed single nucleotide variations. We demonstrated contributions of donor and recipient cells to all AM subsets early post-transplant, with loss of donor-derived cells over time. CONCLUSIONS: Our data reveal extensive heterogeneity among lung macrophages after lung transplantation and indicates that specific sub-populations may be associated with allograft dysfunction, raising the possibility that these cells may represent important therapeutic targets.


Assuntos
COVID-19 , Transplante de Pulmão , Humanos , Interferons , Metalotioneína/genética , Rejeição de Enxerto , Líquido da Lavagem Broncoalveolar , Transplante de Pulmão/efeitos adversos , Pulmão , Macrófagos Alveolares , Aloenxertos
17.
Hepatol Commun ; 6(4): 821-840, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792289

RESUMO

The critical functions of the human liver are coordinated through the interactions of hepatic parenchymal and non-parenchymal cells. Recent advances in single-cell transcriptional approaches have enabled an examination of the human liver with unprecedented resolution. However, dissociation-related cell perturbation can limit the ability to fully capture the human liver's parenchymal cell fraction, which limits the ability to comprehensively profile this organ. Here, we report the transcriptional landscape of 73,295 cells from the human liver using matched single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq). The addition of snRNA-seq enabled the characterization of interzonal hepatocytes at a single-cell resolution, revealed the presence of rare subtypes of liver mesenchymal cells, and facilitated the detection of cholangiocyte progenitors that had only been observed during in vitro differentiation experiments. However, T and B lymphocytes and natural killer cells were only distinguishable using scRNA-seq, highlighting the importance of applying both technologies to obtain a complete map of tissue-resident cell types. We validated the distinct spatial distribution of the hepatocyte, cholangiocyte, and mesenchymal cell populations by an independent spatial transcriptomics data set and immunohistochemistry. Conclusion: Our study provides a systematic comparison of the transcriptomes captured by scRNA-seq and snRNA-seq and delivers a high-resolution map of the parenchymal cell populations in the healthy human liver.


Assuntos
Fígado , Análise de Célula Única , Núcleo Celular/genética , Humanos , Análise de Sequência de RNA , Transcriptoma/genética
18.
Clin Sci (Lond) ; 135(20): 2445-2466, 2021 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709406

RESUMO

The liver is an essential organ that is critical for the removal of toxins, the production of proteins, and the maintenance of metabolic homeostasis. Behind each liver functional unit, termed lobules, hides a heterogeneous, complex, and well-orchestrated system. Despite parenchymal cells being most commonly associated with the liver's primary functionality, it has become clear that it is the immune niche of the liver that plays a central role in maintaining both local and systemic homeostasis by propagating hepatic inflammation and orchestrating its resolution. As such, the immunological processes that are at play in healthy and diseased livers are being investigated thoroughly in order to understand the underpinnings of inflammation and the potential avenues for restoring homeostasis. This review highlights recent advances in our understanding of the immune niche of the liver and provides perspectives for how the implementation of new transcriptomic, multimodal, and spatial technologies can uncover the heterogeneity, plasticity, and location of hepatic immune populations. Findings from these technologies will further our understanding of liver biology and create a new framework for the identification of therapeutic targets.


Assuntos
Microambiente Celular , Sistema Imunitário/imunologia , Hepatopatias/imunologia , Fígado/imunologia , Animais , Regulação da Expressão Gênica , Genômica , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/patologia , Análise de Célula Única , Transcriptoma
19.
Front Immunol ; 12: 748423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691060

RESUMO

The Type I Interferon family of cytokines all act through the same cell surface receptor and induce phosphorylation of the same subset of response regulators of the STAT family. Despite their shared receptor, different Type I Interferons have different functions during immune response to infection. In particular, they differ in the potency of their induced anti-viral and anti-proliferative responses in target cells. It remains not fully understood how these functional differences can arise in a ligand-specific manner both at the level of STAT phosphorylation and the downstream function. We use a minimal computational model of Type I Interferon signaling, focusing on Interferon-α and Interferon-ß. We validate the model with quantitative experimental data to identify the key determinants of specificity and functional plasticity in Type I Interferon signaling. We investigate different mechanisms of signal discrimination, and how multiple system components such as binding affinity, receptor expression levels and their variability, receptor internalization, short-term negative feedback by SOCS1 protein, and differential receptor expression play together to ensure ligand specificity on the level of STAT phosphorylation. Based on these results, we propose phenomenological functional mappings from STAT activation to downstream anti-viral and anti-proliferative activity to investigate differential signal processing steps downstream of STAT phosphorylation. We find that the negative feedback by the protein USP18, which enhances differences in signaling between Interferons via ligand-dependent refractoriness, can give rise to functional plasticity in Interferon-α and Interferon-ß signaling, and explore other factors that control functional plasticity. Beyond Type I Interferon signaling, our results have a broad applicability to questions of signaling specificity and functional plasticity in signaling systems with multiple ligands acting through a bottleneck of a small number of shared receptors.


Assuntos
Interferon-alfa/fisiologia , Interferon beta/fisiologia , Modelos Imunológicos , Receptor Cross-Talk/fisiologia , Receptor de Interferon alfa e beta/fisiologia , Transdução de Sinais/fisiologia , Animais , Simulação por Computador , Dimerização , Retroalimentação Fisiológica , Feminino , Humanos , Concentração Inibidora 50 , Cinética , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Mapeamento de Interação de Proteínas , Fatores de Transcrição STAT/metabolismo , Baço/citologia , Proteína 1 Supressora da Sinalização de Citocina/fisiologia , Linfócitos T/imunologia , Ubiquitina Tiolesterase
20.
Nat Protoc ; 16(6): 2749-2764, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34031612

RESUMO

Single-cell transcriptomics can profile thousands of cells in a single experiment and identify novel cell types, states and dynamics in a wide variety of tissues and organisms. Standard experimental protocols and analysis workflows have been developed to create single-cell transcriptomic maps from tissues. This tutorial focuses on how to interpret these data to identify cell types, states and other biologically relevant patterns with the objective of creating an annotated map of cells. We recommend a three-step workflow including automatic cell annotation (wherever possible), manual cell annotation and verification. Frequently encountered challenges are discussed, as well as strategies to address them. Guiding principles and specific recommendations for software tools and resources that can be used for each step are covered, and an R notebook is included to help run the recommended workflow. Basic familiarity with computer software is assumed, and basic knowledge of programming (e.g., in the R language) is recommended.


Assuntos
Anotação de Sequência Molecular/métodos , Análise de Célula Única , Transcriptoma , Perfilação da Expressão Gênica , Genômica/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA