Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(8): 4164-4173, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351711

RESUMO

Microbial growth often occurs within multicellular communities called biofilms, where cells are enveloped by a protective extracellular matrix. Bacillus subtilis serves as a model organism for biofilm research and produces two crucial secreted proteins, BslA and TasA, vital for biofilm matrix formation. BslA exhibits surface-active properties, spontaneously self-assembling at hydrophobic/hydrophilic interfaces to form an elastic protein film, which renders B. subtilis biofilm surfaces water-repellent. TasA is traditionally considered a fiber-forming protein with multiple matrix-related functions. In our current study, we investigate whether TasA also possesses interfacial properties and whether it has any impact on BslA's ability to form an interfacial protein film. Our research demonstrates that TasA indeed exhibits interfacial activity, partitioning to hydrophobic/hydrophilic interfaces, stabilizing emulsions, and forming an interfacial protein film. Interestingly, TasA undergoes interface-induced restructuring similar to BslA, showing an increase in ß-strand secondary structure. Unlike BslA, TasA rapidly reaches the interface and forms nonelastic films that rapidly relax under pressure. Through mixed protein pendant drop experiments, we assess the influence of TasA on BslA film formation, revealing that TasA and other surface-active molecules can compete for interface space, potentially preventing BslA from forming a stable elastic film. This raises a critical question: how does BslA self-assemble to form the hydrophobic "raincoat" observed in biofilms in the presence of other potentially surface-active species? We propose a model wherein surface-active molecules, including TasA, initially compete with BslA for interface space. However, under lateral compression or pressure, BslA retains its position, expelling other molecules into the bulk. This resilience at the interface may result from structural rearrangements and lateral interactions between BslA subunits. This combined mechanism likely explains BslA's role in forming a stable film integral to B. subtilis biofilm hydrophobicity.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Bactérias/química , Bacillus subtilis/metabolismo , Estrutura Secundária de Proteína , Biofilmes , Matriz Extracelular de Substâncias Poliméricas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(45): e2312022120, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37903266

RESUMO

The soil bacterium Bacillus subtilis is a model organism to investigate the formation of biofilms, the predominant form of microbial life. The secreted protein BslA self-assembles at the surface of the biofilm to give the B. subtilis biofilm its characteristic hydrophobicity. To understand the mechanism of BslA self-assembly at interfaces, here we built a molecular model based on the previous BslA crystal structure and the crystal structure of the BslA paralogue YweA that we determined. Our analysis revealed two conserved protein-protein interaction interfaces supporting BslA self-assembly into an infinite 2-dimensional lattice that fits previously determined transmission microscopy images. Molecular dynamics simulations and in vitro protein assays further support our model of BslA elastic film formation, while mutagenesis experiments highlight the importance of the identified interactions for biofilm structure. Based on this knowledge, YweA was engineered to form more stable elastic films and rescue biofilm structure in bslA deficient strains. These findings shed light on protein film assembly and will inform the development of BslA technologies which range from surface coatings to emulsions in fast-moving consumer goods.


Assuntos
Proteínas de Bactérias , Matriz Extracelular de Substâncias Poliméricas , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Biofilmes , Bacillus subtilis/metabolismo , Simulação de Dinâmica Molecular
3.
Microbiology (Reading) ; 169(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37526065

RESUMO

Biofilms are complex communities of microbes that are bound by an extracellular macromolecular matrix produced by the residents. Biofilms are the predominant form of microbial life in the natural environment and although they are the leading cause of chronic infections, they are equally deeply connected to our ability to bioremediate waste and toxic materials. Here we highlight the emergent properties of biofilm communities and explore notable biofilms before concluding by providing examples of their major impact on our health and both natural and built environments.


Assuntos
Biofilmes , Meio Ambiente , Matriz Extracelular/metabolismo
4.
Protein Sci ; 32(10): e4736, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37515406

RESUMO

Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between ß-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Amiloide/química , Membrana Celular/metabolismo , Corpos de Lewy/metabolismo , Lipídeos
5.
NPJ Biofilms Microbiomes ; 8(1): 98, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36528619

RESUMO

A hallmark of microbial biofilms is the self-production of an extracellular molecular matrix that encases the resident cells. The matrix provides protection from the environment, while spatial heterogeneity of gene expression influences the structural morphology and colony spreading dynamics. Bacillus subtilis is a model bacterial system used to uncover the regulatory pathways and key building blocks required for biofilm growth and development. In this work, we report on the emergence of a highly active population of bacteria during the early stages of biofilm formation, facilitated by the extraction of fluid from the underlying agar substrate. We trace the origin of this fluid extraction to the production of poly-γ-glutamic acid (PGA). The flagella-dependent activity develops behind a moving front of fluid that propagates from the boundary of the biofilm towards the interior. The extent of fluid proliferation is controlled by the presence of extracellular polysaccharides (EPS). We also find that PGA production is positively correlated with higher temperatures, resulting in high-temperature mature biofilm morphologies that are distinct from the rugose colony biofilm architecture typically associated with B. subtilis. Although previous reports have suggested that PGA production does not play a major role in biofilm morphology in the undomesticated isolate NCIB 3610, our results suggest that this strain produces distinct biofilm matrices in response to environmental conditions.


Assuntos
Ácido Glutâmico , Bacillus subtilis/genética , Biofilmes , Ácido Glutâmico/metabolismo , Temperatura
6.
Biofilm ; 4: 100082, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36148433

RESUMO

Single-species bacterial colony biofilms often present recurring morphologies that are thought to be of benefit to the population of cells within and are known to be dependent on the self-produced extracellular matrix. However, much remains unknown in terms of the developmental process at the single cell level. Here, we design and implement systematic time-lapse imaging and quantitative analyses of the growth of Bacillus subtilis colony biofilms. We follow the development from the initial deposition of founding cells through to the formation of large-scale complex structures. Using the model biofilm strain NCIB 3610, we examine the movement dynamics of the growing biomass and compare them with those displayed by a suite of otherwise isogenic matrix-mutant strains. Correspondingly, we assess the impact of an incomplete matrix on biofilm morphologies and sessile growth rate. Our results indicate that radial expansion of colony biofilms results from the division of bacteria at the biofilm periphery rather than being driven by swelling due to fluid intake. Moreover, we show that lack of exopolysaccharide production has a negative impact on cell division rate, and the extracellular matrix components act synergistically to give the biomass the structural strength to produce aerial protrusions and agar substrate-deforming ability.

7.
NPJ Biofilms Microbiomes ; 8(1): 42, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35618743

RESUMO

The increasing awareness of the significance of microbial biofilms across different sectors is continuously revealing new areas of opportunity in the development of innovative technologies in translational research, which can address their detrimental effects, as well as exploit their benefits. Due to the extent of sectors affected by microbial biofilms, capturing their real financial impact has been difficult. This perspective highlights this impact globally, based on figures identified in a recent in-depth market analysis commissioned by the UK's National Biofilms Innovation Centre (NBIC). The outputs from this analysis and the workshops organised by NBIC on its research strategic themes have revealed the breath of opportunities for translational research in microbial biofilms. However, there are still many outstanding scientific and technological challenges which must be addressed in order to catalyse these opportunities. This perspective discusses some of these challenges.


Assuntos
Biofilmes
8.
ISME J ; 16(6): 1512-1522, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35121821

RESUMO

Bacteria can form dense communities called biofilms, where cells are embedded in a self-produced extracellular matrix. Exploiting competitive interactions between strains within the biofilm context can have potential applications in biological, medical, and industrial systems. By combining mathematical modelling with experimental assays, we reveal that spatial structure and competitive dynamics within biofilms are significantly affected by the location and density of the founder cells used to inoculate the biofilm. Using a species-independent theoretical framework describing colony biofilm formation, we show that the observed spatial structure and relative strain biomass in a mature biofilm comprising two isogenic strains can be mapped directly to the geographical distributions of founder cells. Moreover, we define a predictor of competitive outcome that accurately forecasts relative abundance of strains based solely on the founder cells' potential for radial expansion. Consequently, we reveal that variability of competitive outcome in biofilms inoculated at low founder density is a natural consequence of the random positioning of founding cells in the inoculum. Extension of our study to non-isogenic strains that interact through local antagonisms, shows that even for strains with different competition strengths, a race for space remains the dominant mode of competition in low founder density biofilms. Our results, verified by experimental assays using Bacillus subtilis, highlight the importance of spatial dynamics on competitive interactions within biofilms and hence to related applications.


Assuntos
Bacillus subtilis , Biofilmes , Bacillus subtilis/genética , Matriz Extracelular
9.
Microbiology (Reading) ; 167(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34486975

RESUMO

Biofilms are communities of bacteria that are attached to a surface and surrounded by an extracellular matrix. The extracellular matrix protects the community from stressors in the environment, making biofilms robust. The Gram-positive soil bacterium Bacillus subtilis, particularly the isolate NCIB 3610, is widely used as a model for studying biofilm formation. B. subtilis NCIB 3610 forms colony biofilms that are architecturally complex and highly hydrophobic. The hydrophobicity is linked, in part, to the localisation of the protein BslA at the surface of the biofilm, which provides the community with increased resistance to biocides. As most of our knowledge about B. subtilis biofilm formation comes from one isolate, it is unclear if biofilm hydrophobicity is a widely distributed feature of the species. To address this knowledge gap, we collated a library of B. subtilis soil isolates and acquired their whole genome sequences. We used our novel isolates to examine biofilm hydrophobicity and found that, although BslA is encoded and produced by all isolates in our collection, hydrophobicity is not a universal feature of B. subtilis colony biofilms. To test whether the matrix exopolymer poly γ-glutamic acid could be masking hydrophobicity in our hydrophilic isolates, we constructed deletion mutants and found, contrary to our hypothesis, that the presence of poly γ-glutamic acid was not the reason for the observed hydrophilicity. This study highlights the natural variation in the properties of biofilms formed by different isolates and the importance of using a more diverse range of isolates as representatives of a species.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Biofilmes , Matriz Extracelular , Interações Hidrofóbicas e Hidrofílicas
10.
Soft Matter ; 16(36): 8310-8324, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32909024

RESUMO

Much of the science underpinning the global response to the COVID-19 pandemic lies in the soft matter domain. Coronaviruses are composite particles with a core of nucleic acids complexed to proteins surrounded by a protein-studded lipid bilayer shell. A dominant route for transmission is via air-borne aerosols and droplets. Viral interaction with polymeric body fluids, particularly mucus, and cell membranes controls their infectivity, while their interaction with skin and artificial surfaces underpins cleaning and disinfection and the efficacy of masks and other personal protective equipment. The global response to COVID-19 has highlighted gaps in the soft matter knowledge base. We survey these gaps, especially as pertaining to the transmission of the disease, and suggest questions that can (and need to) be tackled, both in response to COVID-19 and to better prepare for future viral pandemics.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/patologia , Pneumonia Viral/patologia , Betacoronavirus/isolamento & purificação , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Desinfecção , Humanos , Muco/virologia , Nanopartículas/química , Pandemias , Equipamento de Proteção Individual , Pneumonia Viral/epidemiologia , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Propriedades de Superfície
11.
Mol Microbiol ; 114(6): 920-933, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32491277

RESUMO

Biofilm formation is a co-operative behaviour, where microbial cells become embedded in an extracellular matrix. This biomolecular matrix helps manifest the beneficial or detrimental outcome mediated by the collective of cells. Bacillus subtilis is an important bacterium for understanding the principles of biofilm formation. The protein components of the B. subtilis matrix include the secreted proteins BslA, which forms a hydrophobic coat over the biofilm, and TasA, which forms protease-resistant fibres needed for structuring. TapA is a secreted protein also needed for biofilm formation and helps in vivo TasA-fibre formation but is dispensable for in vitro TasA-fibre assembly. We show that TapA is subjected to proteolytic cleavage in the colony biofilm and that only the first 57 amino acids of the 253-amino acid protein are required for colony biofilm architecture. Through the construction of a strain which lacks all eight extracellular proteases, we show that proteolytic cleavage by these enzymes is not a prerequisite for TapA function. It remains unknown why TapA is synthesised at 253 amino acids when the first 57 are sufficient for colony biofilm structuring; the findings do not exclude the core conserved region of TapA having a second role beyond structuring the B. subtilis colony biofilm.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas da Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas da Matriz Extracelular/genética , Regulação Bacteriana da Expressão Gênica , Deleção de Sequência
13.
Proc Natl Acad Sci U S A ; 116(27): 13553-13562, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31217292

RESUMO

Biofilm formation by Bacillus subtilis is a communal process that culminates in the formation of architecturally complex multicellular communities. Here we reveal that the transition of the biofilm into a nonexpanding phase constitutes a distinct step in the process of biofilm development. Using genetic analysis we show that B. subtilis strains lacking the ability to synthesize pulcherriminic acid form biofilms that sustain the expansion phase, thereby linking pulcherriminic acid to growth arrest. However, production of pulcherriminic acid is not sufficient to block expansion of the biofilm. It needs to be secreted into the extracellular environment where it chelates Fe3+ from the growth medium in a nonenzymatic reaction. Utilizing mathematical modeling and a series of experimental methodologies we show that when the level of freely available iron in the environment drops below a critical threshold, expansion of the biofilm stops. Bioinformatics analysis allows us to identify the genes required for pulcherriminic acid synthesis in other Firmicutes but the patchwork presence both within and across closely related species suggests loss of these genes through multiple independent recombination events. The seemingly counterintuitive self-restriction of growth led us to explore if there were any benefits associated with pulcherriminic acid production. We identified that pulcherriminic acid producers can prevent invasion by neighboring communities through the generation of an "iron-free" zone, thereby addressing the paradox of pulcherriminic acid production by B. subtilis.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Pirazinas/metabolismo , Bacillus subtilis/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Modelos Teóricos
14.
J Mol Biol ; 430(20): 3642-3656, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30098341

RESUMO

Biofilms are ubiquitous in the natural and man-made environment. They are defined as microbes that are encapsulated in an extracellular, self-produced, biofilm matrix. Growing evidence from the genetic and biochemical analysis of single species biofilms has linked the presence of fibrous proteins to a functional biofilm matrix. Some of these fibers have been described as functional amyloid or amyloid-like fibers. Here we provide an overview of the biophysical and biological data for a wide range of protein fibers found in the biofilm matrix of Gram-positive and Gram-negative bacteria.


Assuntos
Amiloide/metabolismo , Proteínas de Bactérias/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Amiloide/química , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Proteínas de Bactérias/química , Biofilmes , Fenômenos Biofísicos , Fenômenos Químicos , Suscetibilidade a Doenças , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Matriz Extracelular de Substâncias Poliméricas/química , Pseudomonas/fisiologia , Solubilidade , Análise Espectral , Relação Estrutura-Atividade
15.
Mol Microbiol ; 110(6): 897-913, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29802781

RESUMO

Bacterial biofilms are communities of microbial cells encased within a self-produced polymeric matrix. In the Bacillus subtilis biofilm matrix, the extracellular fibres of TasA are essential. Here, a recombinant expression system allows interrogation of TasA, revealing that monomeric and fibre forms of TasA have identical secondary structure, suggesting that fibrous TasA is a linear assembly of globular units. Recombinant TasA fibres form spontaneously, and share the biological activity of TasA fibres extracted from B. subtilis, whereas a TasA variant restricted to a monomeric form is inactive and subjected to extracellular proteolysis. The biophysical properties of both native and recombinant TasA fibres indicate that they are not functional amyloid-like fibres. A gel formed by TasA fibres can recover after physical shear force, suggesting that the biofilm matrix is not static and that these properties may enable B. subtilis to remodel its local environment in response to external cues. Using recombinant fibres formed by TasA orthologues we uncover species variability in the ability of heterologous fibres to cross-complement the B. subtilis tasA deletion. These findings are indicative of specificity in the biophysical requirements of the TasA fibres across different species and/or reflect the precise molecular interactions needed for biofilm matrix assembly.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Biofilmes , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(30): E6184-E6191, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28698374

RESUMO

Biofilms are communities of microbial cells that are encapsulated within a self-produced polymeric matrix. The matrix is critical to the success of biofilms in diverse habitats; however, many details of the composition, structure, and function remain enigmatic. Biofilms formed by the Gram-positive bacterium Bacillus subtilis depend on the production of the secreted film-forming protein BslA. Here, we show that a gradient of electron acceptor availability through the depth of the biofilm gives rise to two distinct functional roles for BslA and that these roles can be genetically separated through targeted amino acid substitutions. We establish that monomeric BslA is necessary and sufficient to give rise to complex biofilm architecture, whereas dimerization of BslA is required to render the community hydrophobic. Dimerization of BslA, mediated by disulfide bond formation, depends on two conserved cysteine residues located in the C-terminal region. Our findings demonstrate that bacteria have evolved multiple uses for limited elements in the matrix, allowing for alternative responses in a complex, changing environment.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Biofilmes , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oxirredução
17.
Sci Rep ; 7(1): 6730, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751732

RESUMO

BslA is a protein secreted by Bacillus subtilis which forms a hydrophobic film that coats the biofilm surface and renders it water-repellent. We have characterised three orthologues of BslA from Bacillus amyloliquefaciens, Bacillus licheniformis and Bacillus pumilus as well as a paralogue from B. subtilis called YweA. We find that the three orthologous proteins can substitute for BslA in B. subtilis and confer a degree of protection, whereas YweA cannot. The degree to which the proteins functionally substitute for native BslA correlates with their in vitro biophysical properties. Our results demonstrate the use of naturally-evolved variants to provide a framework for teasing out the molecular basis of interfacial self-assembly.


Assuntos
Bacillus amyloliquefaciens/genética , Bacillus licheniformis/genética , Bacillus pumilus/genética , Bacillus subtilis/genética , Proteínas de Bactérias/química , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Sequência de Aminoácidos , Bacillus amyloliquefaciens/metabolismo , Bacillus licheniformis/metabolismo , Bacillus pumilus/metabolismo , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Elasticidade , Escherichia coli/genética , Escherichia coli/metabolismo , Teste de Complementação Genética , Variação Genética , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fenótipo , Filogenia , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
18.
Interface Focus ; 7(4): 20160124, 2017 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-28630671

RESUMO

Emulsions are a central component of many modern formulations in food, pharmaceuticals, agrichemicals and personal care products. The droplets in these formulations are limited to being spherical as a consequence of the interfacial tension between the dispersed phase and continuous phase. The ability to control emulsion droplet morphology and stabilize non-spherical droplets would enable the modification of emulsion properties such as stability, substrate binding, delivery rate and rheology. One way of controlling droplet microstructure is to apply an elastic film around the droplet to prevent it from relaxing into a sphere. We have previously shown that BslA, an interfacial protein produced by the bacterial genus Bacillus, forms an elastic film when exposed to an oil- or air-water interface. Here, we highlight BslA's ability to stabilize anisotropic emulsion droplets. First, we show that BslA is capable of arresting dynamic emulsification processes leading to emulsions with variable morphologies depending on the conditions and emulsification technique applied. We then show that frozen emulsion droplets can be manipulated to induce partial coalescence. The structure of the partially coalesced droplets is retained after melting, but only when there is sufficient free BslA in the continuous phase. That the fidelity of replication can be tuned by adjusting the amount of free BslA in solution suggests that freezing BslA-stabilized droplets disrupts the BslA film. Finally, we use BslA's ability to preserve emulsion droplet structural integrity throughout the melting process to design emulsion droplets with a chosen shape and size.

19.
Phys Chem Chem Phys ; 19(12): 8584-8594, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28289744

RESUMO

To stabilize foams, droplets and films at liquid interfaces a range of protein biosurfactants have evolved in nature. Compared to synthetic surfactants, these combine surface activity with biocompatibility and low solution aggregation. One recently studied example is Rsn-2, a component of the foam nest of the frog Engystomops pustulosus, which has been predicted to undergo a clamshell-like opening transition at the air-water interface. Using atomistic molecular dynamics simulations and surface tension measurements we study the adsorption of Rsn-2 onto air-water and cyclohexane-water interfaces. The protein adsorbs readily at both interfaces, with adsorption mediated by the hydrophobic N-terminus. At the cyclohexane-water interface the clamshell opens, due to the favourable interaction between hydrophobic residues and cyclohexane molecules and the penetration of cyclohexane molecules into the protein core. Simulations of deletion mutants showed that removal of the N-terminus inhibits interfacial adsorption, which is consistent with the surface tension measurements. Deletion of the hydrophilic C-terminus also affects adsorption, suggesting that this plays a role in orienting the protein at the interface. The characterisation of the interfacial behaviour gives insight into the factors that control the interfacial adsorption of proteins, which may inform new applications of this and similar proteins in areas including drug delivery and food technology and may also be used in the design of synthetic molecules showing similar changes in conformation at interfaces.


Assuntos
Proteínas de Anfíbios/química , Adsorção , Ar , Cicloexanos/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Propriedades de Superfície , Água/química
20.
Biophys Rev ; 8(4): 429-439, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003858

RESUMO

Intrinsically disordered proteins, proteins that do not have a well-defined three-dimensional structure, make up a significant proportion of our proteome and are particularly prevalent in signaling and regulation. Although their importance has been realized for two decades, there is a lack of high-resolution experimental data. Molecular dynamics simulations have been crucial in reaching our current understanding of the dynamical structural ensemble sampled by intrinsically disordered proteins. In this review, we discuss enhanced sampling simulation methods that are particularly suitable to characterize the structural ensemble, along with examples of applications and limitations. The dynamics within the ensemble can be rigorously analyzed using Markov state models. We discuss recent developments that make Markov state modeling a viable approach for studying intrinsically disordered proteins. Finally, we briefly discuss challenges and future directions when applying molecular dynamics simulations to study intrinsically disordered proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA