Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2228, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076531

RESUMO

The spacetime light cone is central to the definition of causality in the theory of relativity. Recently, links between relativistic and condensed matter physics have been uncovered, where relativistic particles can emerge as quasiparticles in the energy-momentum space of matter. Here, we unveil an energy-momentum analogue of the spacetime light cone by mapping time to energy, space to momentum, and the light cone to the Weyl cone. We show that two Weyl quasiparticles can only interact to open a global energy gap if they lie in each other's energy-momentum dispersion cones-analogous to two events that can only have a causal connection if they lie in each other's light cones. Moreover, we demonstrate that the causality of surface chiral modes in quantum matter is entangled with the causality of bulk Weyl fermions. Furthermore, we identify a unique quantum horizon region and an associated 'thick horizon' in the emergent causal structure.

2.
ACS Omega ; 7(18): 15760-15768, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35571781

RESUMO

Quantum spin Hall (QSH) insulators with large band gaps and dissipationless edge states are of both technological and scientific interest. Although numerous two-dimensional (2D) systems have been predicted to host the QSH phase, very few of them harbor large band gaps and retain their nontrivial band topology when they are deposited on substrates. Here, based on a first-principles analysis with hybrid functional calculations, we investigated the electronic and topological properties of inversion-asymmetric monolayer copper sulfide (Cu2S). Interestingly, we found that monolayer Cu2S possesses an intrinsic QSH phase, Rashba spin splitting, and a large band gap of 220 meV that is suitable for room-temperature applications. Most importantly, we constructed heterostructures of a Cu2S film on PtTe2, h-BN, and Cu(111) substrates and found that the topological properties remain preserved upon an interface with these substrates. Our findings suggest Cu2S as a possible platform to realize inversion-asymmetric QSH insulators with potential applications in low-dissipation electronic devices.

3.
Nat Commun ; 11(1): 4415, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887890

RESUMO

Quantum states induced by single-atomic impurities are at the frontier of physics and material science. While such states have been reported in high-temperature superconductors and dilute magnetic semiconductors, they are unexplored in topological magnets which can feature spin-orbit tunability. Here we use spin-polarized scanning tunneling microscopy/spectroscopy (STM/S) to study the engineered quantum impurity in a topological magnet Co3Sn2S2. We find that each substituted In impurity introduces a striking localized bound state. Our systematic magnetization-polarized probe reveals that this bound state is spin-down polarized, in lock with a negative orbital magnetization. Moreover, the magnetic bound states of neighboring impurities interact to form quantized orbitals, exhibiting an intriguing spin-orbit splitting, analogous to the splitting of the topological fermion line. Our work collectively demonstrates the strong spin-orbit effect of the single-atomic impurity at the quantum level, suggesting that a nonmagnetic impurity can introduce spin-orbit coupled magnetic resonance in topological magnets.

4.
Angew Chem Int Ed Engl ; 59(21): 8270-8276, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32003098

RESUMO

Ligand-induced surface restructuring with heteroatomic doping is used to precisely modify the surface of a prototypical [Au25 (SR1 )18 ]- cluster (1) while maintaining its icosahedral Au13 core for the synthesis of a new bimetallic [Au19 Cd3 (SR2 )18 ]- cluster (2). Single-crystal X-ray diffraction studies reveal that six bidentate Au2 (SR1 )3 motifs (L2) attached to the Au13 core of 1 were replaced by three quadridentate Au2 Cd(SR2 )6 motifs (L4) to create a bimetallic cluster 2. Experimental and theoretical results demonstrate a stronger electronic interaction between the surface motifs (Au2 Cd(SR2 )6 ) and the Au13 core, attributed to a more compact cluster structure and a larger energy gap of 2 compared to that of 1. These factors dramatically enhance the photoluminescence quantum efficiency and lifetime of crystal of the cluster 2. This work provides a new route for the design of a wide range of bimetallic/alloy metal nanoclusters with superior optoelectronic properties and functionality.

5.
Phys Rev Lett ; 123(21): 217004, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31809171

RESUMO

The interplay between unconventional Cooper pairing and quantum states associated with atomic scale defects is a frontier of research with many open questions. So far, only a few of the high-temperature superconductors allow this intricate physics to be studied in a widely tunable way. We use scanning tunneling microscopy to image the electronic impact of Co atoms on the ground state of the LiFe_{1-x}Co_{x}As system. We observe that impurities progressively suppress the global superconducting gap and introduce low energy states near the gap edge, with the superconductivity remaining in the strong-coupling limit. Unexpectedly, the fully opened gap evolves into a nodal state before the Cooper pair coherence is fully destroyed. Our systematic theoretical analysis shows that these new observations can be quantitatively understood by the nonmagnetic Born-limit scattering effect in an s±-wave superconductor, unveiling the driving force of the superconductor to metal quantum phase transition.

6.
ACS Appl Mater Interfaces ; 11(36): 33012-33021, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31414595

RESUMO

Spinel oxides (AB2O4) with unique crystal structures have been widely explored as promising alternative catalysts for efficient oxygen evolution reactions; however, developing novel methods to fabricate robust, cost-effective, and high-performance spinel oxide based electrocatalysts is still a great challenge. Here, utilizing a complementary experimental and theoretical approach, pentavalent vanadium doping in the spinel oxides (i.e., Co3O4 and NiFe2O4) has been thoroughly investigated to engineer their surface structures for the enhanced electrocatalytic oxygen evolution reaction. Specifically, when the optimal concentration of vanadium (ca. 7.7 at. %) is incorporated into Co3O4, the required overpotential to reach a certain jGEOM and jECSA decreases dramatically for oxygen evolution reactions in alkaline media. Even after 30 h of chronopotentiometry, the required potential for V-doped Co3O4 just increases by 16.3 mV, being much lower than that of the undoped one. It is observed that the pentavalent vanadium doping introduces lattice distortions and defects on the surface, which in turn exposes more active sites for reactions. DFT calculations further reveal the rate-determining step changing from the step of *-O to *-OOH to the step of *-OH to *-O, while the corresponding energy barriers decrease from 1.73 to 1.57 eV accordingly after high-valent V doping. Moreover, the oxygen intermediate probing method using methanol as a probing reagent also demonstrates a stronger OH* adsorption on the surface after V doping. When vanadium doping is performed in the inverse spinel matrix of NiFe2O4, impressive performance enhancement in the oxygen evolution reaction is as well witnessed. All these results clearly illustrate that the V doping process can not only efficiently improve the electrochemical properties of spinel transition metal oxides but also provide new insights into the design of high-performance water oxidation electrocatalysts.

7.
Sci Adv ; 5(7): eaav7717, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31360763

RESUMO

The zigzag-edged triangular graphene molecules (ZTGMs) have been predicted to host ferromagnetically coupled edge states with the net spin scaling with the molecular size, which affords large spin tunability crucial for next-generation molecular spintronics. However, the scalable synthesis of large ZTGMs and the direct observation of their edge states have been long-standing challenges because of the molecules' high chemical instability. Here, we report the bottom-up synthesis of π-extended [5]triangulene with atomic precision via surface-assisted cyclodehydrogenation of a rationally designed molecular precursor on metallic surfaces. Atomic force microscopy measurements unambiguously resolve its ZTGM-like skeleton consisting of 15 fused benzene rings, while scanning tunneling spectroscopy measurements reveal edge-localized electronic states. Bolstered by density functional theory calculations, our results show that [5]triangulenes synthesized on Au(111) retain the open-shell π-conjugated character with magnetic ground states.

8.
Nanoscale Res Lett ; 13(1): 43, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29417237

RESUMO

The abounding possibilities of discovering novel materials has driven enhanced research effort in the field of materials physics. Only recently, the quantum anomalous hall effect (QAHE) was realized in magnetic topological insulators (TIs) albeit existing at extremely low temperatures. Here, we predict that MPn (M =Ti, Zr, and Hf; Pn =Sb and Bi) honeycombs are capable of possessing QAH insulating phases based on first-principles electronic structure calculations. We found that HfBi, HfSb, TiBi, and TiSb honeycomb systems possess QAHE with the largest band gap of 15 meV under the effect of tensile strain. In low-buckled HfBi honeycomb, we demonstrated the change of Chern number with increasing lattice constant. The band crossings occurred at low symmetry points. We also found that by varying the buckling distance we can induce a phase transition such that the band crossing between two Hf d-orbitals occurs along high-symmetry point K2. Moreover, edge states are demonstrated in buckled HfBi zigzag nanoribbons. This study contributes additional novel materials to the current pool of predicted QAH insulators which have promising applications in spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA