Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Rep ; 14(1): 4334, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383561

RESUMO

Riding a bicycle is considered a durable skill that cannot be forgotten. Here, novice participants practiced riding a reversed bicycle, in which a reversing gear inverted the handlebar's rotation. Although learning to ride the reversed bicycle was possible, it was slow, highly variable, implicit, and followed an S-shape pattern. In the initial learning phase, failed attempts to ride the normal bicycle indicated strong interference between the two bicycle skills. While additional practice decreased this interference effect, a subset of learners could not ride either bicycle after eight sessions of practice. Experienced riders who performed extensive practice could switch bicycles without failed attempts and exhibited similar performance (i.e., similar handlebar oscillations) on both bicycles. However, their performance on the normal bicycle was worse than that of the novice bicycle riders at baseline. In conclusion, "unlearning" of the normal bicycle skill precedes the initial learning of the reversed bicycle skill, and a signature of such unlearning is still present following extensive practice.


Assuntos
Ciclismo , Pesquisa , Humanos
2.
Front Physiol ; 14: 1303938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074314

RESUMO

In the early 1970s, nine astronauts participated in missions to the Skylab space station. During two preflight testing sessions at the Naval Aerospace Medical Research Laboratory in Pensacola, the amplitudes of their ocular counter-rolling (OCR) during body tilts were assessed to determine if their vestibular functions were within normal ranges. We recently re-evaluated this data to determine asymmetry of each astronaut's OCR response and their OCR slope from sigmoid fits during static leftward and rightward body tilts, which we then compared with their Coriolis sickness susceptibility index (CSSI) on the ground, their motion sickness symptom scores during 0 g maneuvers in parabolic flight, and the severity of the symptoms of space motion sickness (SMS) they reported during their spaceflights. We arranged the astronauts in rank order for SMS severity based on the SMS symptoms they reported during spaceflight and the amount of anti-motion sickness medication they used. As previously reported, the OCR amplitudes of these astronauts were within the normal range. We determined that the OCR amplitudes were not correlated with SMS severity ranking, CSSI, or motion sickness symptoms experienced during parabolic flight. Indices of asymmetry in the OCR reflex were generally small and poorly correlated with SMS scores; however, the only subject with a high index of asymmetry also ranked highly for SMS. Although OCR slope, CSSI, and motion sickness symptoms induced during parabolic flight were each only moderately correlated with SMS severity ranking (rho = 0.41-0.44), a combined index that included all three parameters with equal weighting was significantly correlated with SMS severity ranking (rho = 0.71, p = 0.015). These results demonstrate the challenge of predicting an individual's susceptibility to SMS by measuring a single test parameter in a terrestrial environment and from a limited sample size.

3.
Front Neurol ; 14: 1284029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965165

RESUMO

Introduction: This study compares the balance control and cognitive responses of subjects with bilateral vestibulopathy (BVP) to those of astronauts immediately after they return from long-duration spaceflight on board the International Space Station. Methods: Twenty-eight astronauts and thirty subjects with BVP performed five tests using the same procedures: sit-to-stand, walk-and-turn, tandem walk, duration judgment, and reaction time. Results: Compared to the astronauts' preflight responses, the BVP subjects' responses were impaired in all five tests. However, the BVP subjects' performance during the walk-and-turn and the tandem walk tests were comparable to the astronauts' performance on the day they returned from space. Moreover, the BVP subjects' time perception and reaction time were comparable to those of the astronauts during spaceflight. The BVP subjects performed the sit-to-stand test at a level that fell between the astronauts' performance on the day of landing and 1 day later. Discussion: These results indicate that the alterations in dynamic balance control, time perception, and reaction time that astronauts experience after spaceflight are likely driven by central vestibular adaptations. Vestibular and somatosensory training in orbit and vestibular rehabilitation after spaceflight could be effective countermeasures for mitigating these post-flight performance decrements.

4.
Brain Sci ; 13(2)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36831732

RESUMO

BACKGROUND: A better understanding of how vestibular asymmetry manifests across tests is important due to its potential implications for balance dysfunction, motion sickness susceptibility, and adaptation to new environments. OBJECTIVE: We report the results of multiple tests for vestibular asymmetry in 32 healthy participants. METHODS: Asymmetry was measured using perceptual reports during unilateral centrifugation, oculomotor responses during visual alignment tasks, vestibulo-ocular reflex gain during head impulse tests, and body rotation during stepping tests. RESULTS: A significant correlation was observed between asymmetries of subjective visual vertical and verbal report during unilateral centrifugation. Another significant correlation was observed between the asymmetries of ocular alignment, vestibulo-ocular reflex gain, and body rotation. CONCLUSIONS: These data suggest that there are underlying vestibular asymmetries in healthy individuals that are consistent across various vestibular challenges. In addition, these findings have value in guiding test selection during experimental design for assessing vestibular asymmetry in healthy adults.

5.
Front Physiol ; 13: 1029161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505047

RESUMO

To properly assess the risk induced by vestibular and sensorimotor adaptation during exploration missions, we examined how long-duration stays on the International Space Station affect functional performance after gravity transitions. Mission-critical tasks that challenge the balance and the locomotion control systems were assessed: i.e., sit-to-stand, recovery-from-fall, tandem-walk, and walk-and-turn. We assessed 19 astronauts, including 7 first-time flyers and 12 experienced flyers, before their flight, a few hours after landing, and then 1 day and 6-11 days later. Results show that adaptation to long-term weightlessness causes deficits in functional performance immediately after landing that can last for up to 1 week. No differences were observed between first-time and experienced astronaut groups. These data suggest that additional sensorimotor-based countermeasures may be necessary to maintain functional performance at preflight levels when landing on planetary surfaces after a long period in weightlessness.

6.
Neurosci Insights ; 17: 26331055221119441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983377

RESUMO

Resistance training is a promising strategy to promote healthy cognitive aging; however, the brain mechanisms by which resistance training benefits cognition have yet to be determined. Here, we examined the effects of a 12-week resistance training program on resting brain activity and cerebrovascular function in 20 healthy older adults (14 females, mean age 69.1 years). In this single group clinical trial, multimodal 3 T magnetic resonance imaging was performed at 3 time points: baseline (preceding a 12-week control period), pre-intervention, and post-intervention. Along with significant improvements in fluid cognition (d = 1.27), 4 significant voxelwise clusters were identified for decreases in resting brain activity after the intervention (Cerebellum, Right Middle Temporal Gyrus, Left Inferior Parietal Lobule, and Right Inferior Parietal Lobule), but none were identified for changes in resting cerebral blood flow. Using a separate region of interest approach, we provide estimates for improved cerebral blood flow, compared with declines over the initial control period, in regions associated with cognitive impairment, such as hippocampal blood flow (d = 0.40), and posterior cingulate blood flow (d = 0.61). Finally, resistance training had a small countermeasure effect on the age-related progression of white matter lesion volume (rank-biserial = -0.22), a biomarker of cerebrovascular disease. These proof-of-concept data support larger trials to determine whether resistance training can attenuate or even reverse salient neurodegenerative processes.

7.
Cells ; 12(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36611835

RESUMO

The field of human space travel is in the midst of a dramatic revolution. Upcoming missions are looking to push the boundaries of space travel, with plans to travel for longer distances and durations than ever before. Both the National Aeronautics and Space Administration (NASA) and several commercial space companies (e.g., Blue Origin, SpaceX, Virgin Galactic) have already started the process of preparing for long-distance, long-duration space exploration and currently plan to explore inner solar planets (e.g., Mars) by the 2030s. With the emergence of space tourism, space travel has materialized as a potential new, exciting frontier of business, hospitality, medicine, and technology in the coming years. However, current evidence regarding human health in space is very limited, particularly pertaining to short-term and long-term space travel. This review synthesizes developments across the continuum of space health including prior studies and unpublished data from NASA related to each individual organ system, and medical screening prior to space travel. We categorized the extraterrestrial environment into exogenous (e.g., space radiation and microgravity) and endogenous processes (e.g., alteration of humans' natural circadian rhythm and mental health due to confinement, isolation, immobilization, and lack of social interaction) and their various effects on human health. The aim of this review is to explore the potential health challenges associated with space travel and how they may be overcome in order to enable new paradigms for space health, as well as the use of emerging Artificial Intelligence based (AI) technology to propel future space health research.


Assuntos
Voo Espacial , Ausência de Peso , Humanos , Inteligência Artificial , Meio Ambiente Extraterreno , Ritmo Circadiano
8.
PLoS One ; 16(7): e0255018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34293060

RESUMO

OBJECTIVES: Resistance training (RT) is a promising strategy to slow or prevent fluid cognitive decline during aging. However, the effects of strength-specific RT programs have received little attention. The purpose of this single-group proof of concept clinical trial was to determine whether a 12-week strength training (ST) program could improve fluid cognition in healthy older adults 60 to 80 years of age, and to explore concomitant physiological and psychological changes. METHODS: Twenty participants (69.1 ± 5.8 years, 14 women) completed this study with no drop-outs or severe adverse events. Baseline assessments were completed before an initial 12-week control period, then participants were re-tested at pre-intervention and after the 12-week ST intervention. The NIH Toolbox Cognition Battery and standard physical and psychological measures were administered at all three time points. During the 36 sessions of periodized ST (3 sessions per week), participants were supervised by an exercise specialist and challenged via autoregulatory load progression. RESULTS: Test-retest reliability over the control period was good for fluid cognition and excellent for crystallized cognition. Fluid composite scores significantly increased from pre- to post-intervention (8.2 ± 6.1%, p < 0.01, d = 1.27), while crystallized composite scores did not (-0.5 ± 2.8%, p = 0.46, d = -0.34). Performance on individual fluid instruments, including executive function, attention, working memory, and processing speed, also significantly improved. Surprisingly, changes in fluid composite scores had small negative correlations with changes in muscular strength and sleep quality, but a small positive correlation with changes in muscular power. CONCLUSIONS: Thus, improvements in fluid cognition can be safely achieved in older adults using a 12-week high-intensity ST program, but further controlled studies are needed to confirm these findings. Furthermore, the relationship with other widespread physiological and psychological benefits remains unclear.


Assuntos
Cognição/fisiologia , Treinamento Resistido , Idoso , Feminino , Humanos , Masculino , Projetos Piloto , Estatísticas não Paramétricas , Inquéritos e Questionários , Resultado do Tratamento
9.
Front Syst Neurosci ; 15: 658985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986648

RESUMO

Astronauts experience post-flight disturbances in postural and locomotor control due to sensorimotor adaptations during spaceflight. These alterations may have adverse consequences if a rapid egress is required after landing. Although current exercise protocols can effectively mitigate cardiovascular and muscular deconditioning, the benefits to post-flight sensorimotor dysfunction are limited. Furthermore, some exercise capabilities like treadmill running are currently not feasible on exploration spaceflight vehicles. Thus, new in-flight operational countermeasures are needed to mitigate postural and locomotor control deficits after exploration missions. Data from spaceflight and from analog studies collectively suggest that body unloading decreases the utilization of proprioceptive input, and this adaptation strongly contributes to balance dysfunction after spaceflight. For example, on return to Earth, an astronaut's vestibular input may be compromised by adaptation to microgravity, but their proprioceptive input is compromised by body unloading. Since proprioceptive and tactile input are important for maintaining postural control, keeping these systems tuned to respond to upright balance challenges during flight may improve functional task performance after flight through dynamic reweighting of sensory input. Novel approaches are needed to compensate for the challenges of balance training in microgravity and must be tested in a body unloading environment such as head down bed rest. Here, we review insights from the literature and provide observations from our laboratory that could inform the development of an in-flight proprioceptive countermeasure.

10.
Vasc Health Risk Manag ; 16: 133-142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308406

RESUMO

OBJECTIVE: A new automated and adjustable blood pressure (BP) system has been developed to improve the accuracy of BP measurements on public-use health stations. This self-fitting BP system includes a mechanical cuff that wraps down to the user's arm prior to bladder inflation. The purpose of this study was to validate the adaptable BP system (ABPS) using the current standards from the Association for the Advancement of Medical Instrumentation (AAMI). METHODS: The AAMI/ISO 81060:2013 standards for clinical validation of non-invasive automated arterial BP measurement devices were followed precisely using the same arm sequential method. For each participant, BP was measured over multiple trials by trained observers alternating a reference sphygmomanometer with the ABPS. All study requirements were met with 85 qualifying participants, each with 3 valid paired determinations. RESULTS: The mean difference between ABPS BP and reference BP using all 255 paired determinations was -2.4 ± 7.7 mmHg for systolic and 1.7 ± 5.7 mmHg for diastolic. The standard deviation of the averaged paired determinations per participant was 6.3 mmHg for systolic and 5.2 mmHg for diastolic. Arm circumference measurements had a mean error of -2.1 ± 2.4 cm (R2 = 0.87). A new prediction model for arm circumference was validated using a holdout dataset (R2 = 0.94). CONCLUSION: The results of the study confirm that the ABPS met all benchmarks established by the AAMI. The device accurately measures BP across a wide range of arm circumferences (24-44 cm) and is suitable for use by individuals to self-monitor BP.


Assuntos
Braço/irrigação sanguínea , Determinação da Pressão Arterial/instrumentação , Pressão Sanguínea , Hipertensão/diagnóstico , Saúde Pública/instrumentação , Adolescente , Adulto , Idoso , Automação , California , Desenho de Equipamento , Feminino , Humanos , Hipertensão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Adulto Jovem
11.
Phys Ther ; 100(6): 907-916, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-31944253

RESUMO

The prevalence of dementia and other age-associated cognitive disorders is steadily increasing worldwide. With no cure after diagnosis, successful treatment likely requires maximum adherence to preventative countermeasures. Many potential risk factors are modifiable through exercise. Specifically, mounting evidence suggests that long-term resistance training (RT) can help maintain cognitive abilities with aging and have additional benefits to overall brain health. Physical therapists are uniquely positioned to administer such clinical interventions designed to slow disease progression. However, a neuroscientific foundation for these benefits must be established to justify the integration of RT for brain health into practice. The mechanisms of cognitive decline are commonly linked to fundamental processes of aging. Even healthy older adults experience decreases in physical capacity, vascular function, brain structure and function, glucose regulation, inflammation, mood, and sleep quality. Yet, clinical trials involving RT in older adults have consistently demonstrated improvements in each of these systems with concomitant enhancement of cognitive performance. Beneficial adaptations may indirectly or directly mediate benefits to brain function, and understanding this relationship can help us develop optimal intervention strategies for the aging population.


Assuntos
Melhoramento Biomédico/métodos , Transtornos Cognitivos/prevenção & controle , Cognição/fisiologia , Treinamento Resistido/métodos , Adaptação Fisiológica , Afeto/fisiologia , Idoso , Glicemia/metabolismo , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Circulação Cerebrovascular/fisiologia , Disfunção Cognitiva/reabilitação , Humanos , Inflamação/fisiopatologia , Inflamação/prevenção & controle , Força Muscular/fisiologia , Desempenho Físico Funcional , Sono/fisiologia , Fatores de Tempo
12.
Front Physiol ; 9: 72, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29491839

RESUMO

Hands may show early signs of aging with altered skin texture, skin permeability and vascular properties. In clinics, a hand volumeter is used to measure swelling of hands due to edema, carpal tunnel syndrome or drug interventions. The hand volume measurements are generally taken without taking age into consideration. We hypothesized that age affects hand volumeter measurements and that the younger age group (≤40 years) records a greater change in hand volume as compared to the older group (>40 years). Four volumetric measurements were taken at 5 min intervals during 20 min of water immersion using a clinically-approved hand volumeter. After 20 min of immersion, the hand volume changes of the younger age group were significantly higher than the older age group (p < 0.001). Specifically, the right-hand volume of the younger age group (≤40 years, n = 30) increased by 4.3 ± 2%, and the left hand increased by 3.4 ± 2.1%. Conversely, the right-hand volume of the older age group (>40 years, n = 10) increased by 2.2 ± 2.0%, and the left hand decreased by 0.6 ± 2.4% after 20 min of water immersion. The data are presented as Mean ± SD. Hand volume changes were not correlated with body mass index (BMI) or gender, and furthermore, neither of these two variables affected the relationship between age and hand volume changes with water immersion. We conclude that the younger age group has a higher increase in hand volume with water immersion as compared to the older age group.

13.
Bone Rep ; 7: 57-62, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28875158

RESUMO

Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534). However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001) greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals) or in-flight environmental conditions other than microgravity (e.g. pCO2 levels) may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible for discordant calvaria bone adaptations between STS-131 and Bion-M1 mice.

14.
NPJ Microgravity ; 2: 16022, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28725733

RESUMO

Spaceflight causes sensorimotor adaptations that result in balance deficiencies on return to a gravitational environment. Treadmill exercise within lower-body negative pressure (LBNP) helps protect physiological function during microgravity as simulated by bed rest. Therefore, we hypothesized that treadmill exercise within LBNP would prevent balance losses in both male and female identical twins during 30 days of 6° head-down tilt bed rest. Fifteen (seven female and eight male) identical twin sets participated in this simulation of microgravity. Within each twin pair, one twin was randomly assigned to an exercise group that performed 40 min of supine treadmill exercise within LBNP set to generate 1.0-1.2 body weight, followed by 5 min of static feet-supported LBNP, 6 days per week. Their identical sibling was assigned to a non-exercise control group with all other bed rest conditions equivalent. Before and immediately after bed rest, subjects completed standing and walking rail balance tests with eyes open and eyes closed. In control subjects, standing rail balance times (men: -42%, women: -40%), rail walk distances (men: -44%, women: -32%) and rail walk times (men: -34%, women: -31%) significantly decreased after bed rest. Compared with controls, treadmill exercise within LBNP significantly attenuated losses of standing rail balance time by 63% in men, but the 41% attenuation in women was not significant. Treadmill exercise within LBNP did not affect rail walk abilities in men or women. Treadmill exercise within LBNP during simulated spaceflight attenuates loss of balance control in men but not in women.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA