RESUMO
OBJECTIVE: We quantified the effect of acute exposure to a high dosage of inorganic mercury on gene expression in Drosophila melanogaster using RNA-sequencing of whole adult females. RESULTS: We found 119 genes with higher gene expression following treatment (including all 5 Drosophila metallothionine genes and a number of heat shock protein genes), and 31 with lower expression (several of which are involved in egg formation). Our results highlight biological processes and genetic pathways impacted by exposure to this toxic metal, and provide motivation for future studies to understand the genetic basis of response to mercury.
Assuntos
Drosophila melanogaster , Mercúrio , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos dos fármacos , Feminino , Mercúrio/toxicidade , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismoRESUMO
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper results in cell and tissue damage ranging in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes respond to nonessential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the heavy metal stress response. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource using a combination of differential expression analysis and expression quantitative trait locus mapping. Differential expression analysis revealed clear patterns of tissue-specific expression. Tissue and treatment specific responses to copper stress were also detected using expression quantitative trait locus mapping. Expression quantitative trait locus associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited both genotype-by-tissue and genotype-by-treatment effects on gene expression under copper stress, illuminating tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight candidate genes for future functional characterization.
Assuntos
Drosophila melanogaster , Metais Pesados , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Cobre/toxicidade , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Regulação da Expressão Gênica , Drosophila/genética , Expressão GênicaRESUMO
Copper is one of a handful of biologically necessary heavy metals that is also a common environmental pollutant. Under normal conditions, copper ions are required for many key physiological processes. However, in excess, copper quickly results in cell and tissue damage that can range in severity from temporary injury to permanent neurological damage. Because of its biological relevance, and because many conserved copper-responsive genes also respond to other non-essential heavy metal pollutants, copper resistance in Drosophila melanogaster is a useful model system with which to investigate the genetic control of the response to heavy metal stress. Because heavy metal toxicity has the potential to differently impact specific tissues, we genetically characterized the control of the gene expression response to copper stress in a tissue-specific manner in this study. We assessed the copper stress response in head and gut tissue of 96 inbred strains from the Drosophila Synthetic Population Resource (DSPR) using a combination of differential expression analysis and expression quantitative trait locus (eQTL) mapping. Differential expression analysis revealed clear patterns of tissue-specific expression, primarily driven by a more pronounced gene expression response in gut tissue. eQTL mapping of gene expression under control and copper conditions as well as for the change in gene expression following copper exposure (copper response eQTL) revealed hundreds of genes with tissue-specific local cis-eQTL and many distant trans-eQTL. eQTL associated with MtnA, Mdr49, Mdr50, and Sod3 exhibited genotype by environment effects on gene expression under copper stress, illuminating several tissue- and treatment-specific patterns of gene expression control. Together, our data build a nuanced description of the roles and interactions between allelic and expression variation in copper-responsive genes, provide valuable insight into the genomic architecture of susceptibility to metal toxicity, and highlight many candidate genes for future functional characterization.
RESUMO
We use ATAC-seq to examine chromatin accessibility for four different tissues in Drosophila melanogaster: adult female brain, ovaries, and both wing and eye-antennal imaginal discs from males. Each tissue is assayed in eight different inbred strain genetic backgrounds, seven associated with a reference quality genome assembly. We develop a method for the quantile normalization of ATAC-seq fragments and test for differences in coverage among genotypes, tissues, and their interaction at 44099 peaks throughout the euchromatic genome. For the strains with reference quality genome assemblies, we correct ATAC-seq profiles for read mis-mapping due to nearby polymorphic structural variants (SVs). Comparing coverage among genotypes without accounting for SVs results in a highly elevated rate (55%) of identifying false positive differences in chromatin state between genotypes. After SV correction, we identify 1050, 30383, and 4508 regions whose peak heights are polymorphic among genotypes, among tissues, or exhibit genotype-by-tissue interactions, respectively. Finally, we identify 3988 candidate causative variants that explain at least 80% of the variance in chromatin state at nearby ATAC-seq peaks.
Assuntos
Cromatina , Drosophila melanogaster , Masculino , Animais , Feminino , Cromatina/genética , Drosophila melanogaster/genética , Sequenciamento de Cromatina por Imunoprecipitação , Genótipo , Variação Genética , Sequenciamento de Nucleotídeos em Larga EscalaRESUMO
Introduction: Heavy metal pollutants can have long lasting negative impacts on ecosystem health and can shape the evolution of species. The persistent and ubiquitous nature of heavy metal pollution provides an opportunity to characterize the genetic mechanisms that contribute to metal resistance in natural populations. Methods: We examined variation in resistance to copper, a common heavy metal contaminant, using wild collections of the model organism Drosophila melanogaster. Flies were collected from multiple sites that varied in copper contamination risk. We characterized phenotypic variation in copper resistance within and among populations using bulked segregant analysis to identify regions of the genome that contribute to copper resistance. Results and Discussion: Copper resistance varied among wild populations with a clear correspondence between resistance level and historical exposure to copper. We identified 288 SNPs distributed across the genome associated with copper resistance. Many SNPs had population-specific effects, but some had consistent effects on copper resistance in all populations. Significant SNPs map to several novel candidate genes involved in refolding disrupted proteins, energy production, and mitochondrial function. We also identified one SNP with consistent effects on copper resistance in all populations near CG11825, a gene involved in copper homeostasis and copper resistance. We compared the genetic signatures of copper resistance in the wild-derived populations to genetic control of copper resistance in the Drosophila Synthetic Population Resource (DSPR) and the Drosophila Genetic Reference Panel (DGRP), two copper-naïve laboratory populations. In addition to CG11825, which was identified as a candidate gene in the wild-derived populations and previously in the DSPR, there was modest overlap of copper-associated SNPs between the wild-derived populations and laboratory populations. Thirty-one SNPs associated with copper resistance in wild-derived populations fell within regions of the genome that were associated with copper resistance in the DSPR in a prior study. Collectively, our results demonstrate that the genetic control of copper resistance is highly polygenic, and that several loci can be clearly linked to genes involved in heavy metal toxicity response. The mixture of parallel and population-specific SNPs points to a complex interplay between genetic background and the selection regime that modifies the effects of genetic variation on copper resistance.
RESUMO
The germline mobilization of transposable elements (TEs) by small RNA mediated silencing pathways is conserved across eukaryotes and critical for ensuring the integrity of gamete genomes. However, genomes are recurrently invaded by novel TEs through horizontal transfer. These invading TEs are not targeted by host small RNAs, and their unregulated activity can cause DNA damage in germline cells and ultimately lead to sterility. Here we use hybrid dysgenesis-a sterility syndrome of Drosophila caused by transposition of invading P-element DNA transposons-to uncover host genetic variants that modulate dysgenic sterility. Using a panel of highly recombinant inbred lines of Drosophila melanogaster, we identified two linked quantitative trait loci (QTL) that determine the severity of dysgenic sterility in young and old females, respectively. We show that ovaries of fertile genotypes exhibit increased expression of splicing factors that suppress the production of transposase encoding transcripts, which likely reduces the transposition rate and associated DNA damage. We also show that fertile alleles are associated with decreased sensitivity to double-stranded breaks and enhanced DNA repair, explaining their ability to withstand high germline transposition rates. Together, our work reveals a diversity of mechanisms whereby host genotype modulates the cost of an invading TE, and points to genetic variants that were likely beneficial during the P-element invasion.
Assuntos
Drosophila melanogaster , Infertilidade , Animais , Feminino , Drosophila melanogaster/genética , Processamento Alternativo , Drosophila/genética , Elementos de DNA Transponíveis , Reparo do DNA , Variação Genética , Infertilidade/genéticaRESUMO
Drosophila melanogaster has proved an effective system with which to understand the evolutionary genetics and molecular mechanisms of insecticide resistance. Insecticide use has left signatures of selection in the fly genome, and both functional and quantitative genetic studies in the system have identified genes and variants associated with resistance. Here, we use D. melanogaster and leverage a bulk phenotyping and pooled sequencing "extreme quantitative trait loci" approach to genetically dissect variation in resistance to malathion, an organophosphate insecticide. We resolve 2 quantitative trait loci, one of which implicates allelic variation at the cytochrome P450 gene Cyp6g1, a strong candidate based on previous work. The second shows no overlap with hits from a previous genome-wide association study for malathion resistance, recapitulating other studies showing that different strategies for complex trait dissection in flies can yield apparently different architectures. Notably, we see no genetic signal at the Ace gene. Ace encodes the target of organophosphate insecticide inhibition, and genome-wide association studies have identified strong Ace-linked associations with resistance in flies. The absence of quantitative trait locus implicating Ace here is most likely because our mapping population does not segregate for several of the known functional polymorphisms impacting resistance at Ace, perhaps because our population is derived from flies collected prior to the widespread use of organophosphate insecticides. Our fundamental approach can be an efficient, powerful strategy to dissect genetic variation in resistance traits. Nonetheless, studies seeking to interrogate contemporary insecticide resistance variation may benefit from deriving mapping populations from more recently collected strains.
Assuntos
Drosophila melanogaster , Inseticidas , Animais , Drosophila melanogaster/genética , Locos de Características Quantitativas , Malation/toxicidade , Estudo de Associação Genômica Ampla , Inseticidas/toxicidade , Resistência a Inseticidas/genéticaRESUMO
We examined the effect of developmental exposure to three heavy metals - cadmium, copper, and lead - on gene expression in adult head tissue in the model organism Drosophila melanogaster . All metals affected development time and/or gene expression level. While variation in the response to each metal was apparent, two differentially-expressed genes were upregulated in response to all three metal treatments, and 11 genes were downregulated in two of the three treatments. Our work reveals that developmental metal exposure has the potential to have long-lasting, metal-specific effects on gene expression in adults, even after the metal stress has been removed.
RESUMO
Despite the value of recombinant inbred lines for the dissection of complex traits, large panels can be difficult to maintain, distribute, and phenotype. An attractive alternative to recombinant inbred lines for many traits leverages selecting phenotypically extreme individuals from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segregant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here, we describe such an extreme quantitative trait locus, or extreme quantitative trait loci, mapping strategy that builds on an existing multiparental population, the Drosophila Synthetic Population Resource, and involves phenotyping and genotyping a population derived by mixing hundreds of Drosophila Synthetic Population Resource recombinant inbred lines. Simulations demonstrate that challenging, yet experimentally tractable extreme quantitative trait loci designs (≥4 replicates, ≥5,000 individuals/replicate, and selecting the 5-10% most extreme animals) yield at least the same power as traditional recombinant inbred line-based quantitative trait loci mapping and can localize variants with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated extreme quantitative trait loci experiment that identifies 7 quantitative trait loci for caffeine resistance. Two mapped extreme quantitative trait loci factors replicate loci previously identified in recombinant inbred lines, 6/7 are associated with excellent candidate genes, and RNAi knock-downs support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists, a bulked phenotyping/genotyping extreme quantitative trait loci design has considerable advantages.
Assuntos
Drosophila melanogaster , Locos de Características Quantitativas , Animais , Mapeamento Cromossômico , Drosophila/genética , Drosophila melanogaster/genética , FenótipoRESUMO
A range of heavy metals are required for normal cell function and homeostasis. However, the anthropogenic release of metal compounds into soil and water sources presents a pervasive health threat. Copper is one of many heavy metals that negatively impacts diverse organisms at a global scale. Using a combination of quantitative trait locus (QTL) mapping and RNA sequencing in the Drosophila Synthetic Population Resource, we demonstrate that resistance to the toxic effects of ingested copper in D. melanogaster is genetically complex and influenced by allelic and expression variation at multiple loci. QTL mapping identified several QTL that account for a substantial fraction of heritability. Additionally, we find that copper resistance is impacted by variation in behavioral avoidance of copper and may be subject to life-stage specific regulation. Gene expression analysis further demonstrated that resistant and sensitive strains are characterized by unique expression patterns. Several of the candidate genes identified via QTL mapping and RNAseq have known copper-specific functions (e.g., Ccs, Sod3, CG11825), and others are involved in the regulation of other heavy metals (e.g., Catsup, whd). We validated several of these candidate genes with RNAi suggesting they contribute to variation in adult copper resistance. Our study illuminates the interconnected roles that allelic and expression variation, organism life stage, and behavior play in copper resistance, allowing a deeper understanding of the diverse mechanisms through which metal pollution can negatively impact organisms.
Assuntos
Cobre/toxicidade , Resistência a Medicamentos/genética , Intoxicação por Metais Pesados/genética , Polimorfismo Genético , Locos de Características Quantitativas , Animais , Comportamento Animal , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Redes e Vias Metabólicas/genéticaRESUMO
Evolution by natural selection occurs when the frequencies of genetic variants change because individuals differ in Darwinian fitness components such as survival or reproductive success. Differential fitness has been demonstrated in field studies of many organisms, but it remains unclear how well we can quantitatively predict allele frequency changes from fitness measurements. Here, we characterize natural selection on millions of Single Nucleotide Polymorphisms (SNPs) across the genome of the annual plant Mimulus guttatus. We use fitness estimates to calibrate population genetic models that effectively predict allele frequency changes into the next generation. Hundreds of SNPs experienced "male selection" in 2013 with one allele at each SNP elevated in frequency among successful male gametes relative to the entire population of adults. In the following generation, allele frequencies at these SNPs consistently shifted in the predicted direction. A second year of study revealed that SNPs had effects on both viability and reproductive success with pervasive trade-offs between fitness components. SNPs favored by male selection were, on average, detrimental to survival. These trade-offs (antagonistic pleiotropy and temporal fluctuations in fitness) may be essential to the long-term maintenance of alleles. Despite the challenges of measuring selection in the wild, the strong correlation between predicted and observed allele frequency changes suggests that population genetic models have a much greater role to play in forward-time prediction of evolutionary change.
Assuntos
Evolução Molecular , Aptidão Genética/genética , Mimulus/genética , Seleção Genética/genética , Alelos , DNA de Plantas/genética , Frequência do Gene/genética , Genética Populacional , Genoma de Planta/genética , Genótipo , Mimulus/crescimento & desenvolvimento , Locos de Características Quantitativas/genéticaRESUMO
Imaginal disc morphogenesis during metamorphosis in Drosophila melanogaster provides an excellent model to uncover molecular mechanisms by which hormonal signals effect physical changes during development. The broad (br) Z2 isoform encodes a transcription factor required for disc morphogenesis in response to 20-hydroxyecdysone, yet how it accomplishes this remains largely unknown. Here, we use functional studies of amorphic br5 mutants and a transcriptional target approach to identify processes driven by br and its regulatory targets in leg imaginal discs. br5 mutants fail to properly remodel their basal extracellular matrix (ECM) between 4 and 7 hr after puparium formation. Additionally, br5 mutant discs do not undergo the cell shape changes necessary for leg elongation and fail to elongate normally when exposed to the protease trypsin. RNA-sequencing of wild-type and br5 mutant leg discs identified 717 genes differentially regulated by br, including a large number of genes involved in glycolysis, and genes that encode proteins that interact with the ECM. RNA interference-based functional studies reveal that several of these genes are required for adult leg formation, particularly those involved in remodeling the ECM. Additionally, brZ2 expression is abruptly shut down at the onset of metamorphosis, and expressing it beyond this time results in failure of leg development during the late prepupal and pupal stages. Taken together, our results suggest that brZ2 is required to drive ECM remodeling, change cell shape, and maintain metabolic activity through the midprepupal stage, but must be switched off to allow expression of pupation genes.
Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Hormônios de Inseto/metabolismo , Morfogênese , Fatores de Transcrição/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Matriz Extracelular/metabolismo , Glicólise , Discos Imaginais/metabolismo , Transdução de Sinais , Fatores de Transcrição/genéticaRESUMO
OBJECTIVE: Segregating genetic variants contribute to the response to toxic, xenobiotic compounds, and identifying these causative sites can help describe the mechanisms underlying metabolism of toxic compounds. In previous work we implicated the detoxification gene Ugt86Dd in the genetic control of larval nicotine resistance in Drosophila melanogaster. Furthermore, we suggested that a naturally-occurring 22-bp deletion that leads to a stop codon in exon 2 of the gene markedly reduces resistance. Here we use homology directed CRISPR/Cas9 gene editing to specifically test this hypothesis. RESULTS: We edited chromosome three from an inbred strain named A4 which carries the insertion allele at Ugt86Dd, successfully generated four alleles carrying the 22-bp Ugt86Dd deletion, and substituted edited chromosomes back into the A4 background. The original A4 strain, and an un-edited control strain in the same A4 background, show no significant difference in egg-to-adult or larva-to-adult viability on either control media or nicotine-supplemented media, and only slightly delayed development in nicotine media. However, strains carrying the 22-bp deletion showed reduced viability in nicotine conditions, and significantly longer development. Our data strongly suggest that the naturally-occurring 22-bp insertion/deletion event in Ugt86Dd directly impacts variation in nicotine resistance in D. melanogaster.
Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster , Resistência a Medicamentos/genética , Deleção de Genes , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Animais , Sistemas CRISPR-Cas , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Edição de GenesRESUMO
There is considerable variation in sleep duration, timing and quality in human populations, and sleep dysregulation has been implicated as a risk factor for a range of health problems. Human sleep traits are known to be regulated by genetic factors, but also by an array of environmental and social factors. These uncontrolled, non-genetic effects complicate powerful identification of the loci contributing to sleep directly in humans. The model system, Drosophila melanogaster, exhibits a behavior that shows the hallmarks of mammalian sleep, and here we use a multitiered approach, encompassing high-resolution QTL mapping, expression QTL data, and functional validation with RNAi to investigate the genetic basis of sleep under highly controlled environmental conditions. We measured a battery of sleep phenotypes in >750 genotypes derived from a multiparental mapping panel and identified several, modest-effect QTL contributing to natural variation for sleep. Merging sleep QTL data with a large head transcriptome eQTL mapping dataset from the same population allowed us to refine the list of plausible candidate causative sleep loci. This set includes genes with previously characterized effects on sleep and circadian rhythms, in addition to novel candidates. Finally, we employed adult, nervous system-specific RNAi on the Dopa decarboxylase, dyschronic, and timeless genes, finding significant effects on sleep phenotypes for all three. The genes we resolve are strong candidates to harbor causative, regulatory variation contributing to sleep.
Assuntos
Polimorfismo Genético , Locos de Características Quantitativas , Sono/genética , Animais , Ritmo Circadiano/genética , Drosophila melanogaster , TranscriptomaRESUMO
It has been hypothesized that individually-rare hidden structural variants (SVs) could account for a significant fraction of variation in complex traits. Here we identified more than 20,000 euchromatic SVs from 14 Drosophila melanogaster genome assemblies, of which ~40% are invisible to high specificity short-read genotyping approaches. SVs are common, with 31.5% of diploid individuals harboring a SV in genes larger than 5kb, and 24% harboring multiple SVs in genes larger than 10kb. SV minor allele frequencies are rarer than amino acid polymorphisms, suggesting that SVs are more deleterious. We show that a number of functionally important genes harbor previously hidden structural variants likely to affect complex phenotypes. Furthermore, SVs are overrepresented in candidate genes associated with quantitative trait loci mapped using the Drosophila Synthetic Population Resource. We conclude that SVs are ubiquitous, frequently constitute a heterogeneous allelic series, and can act as rare alleles of large effect.
Assuntos
Drosophila melanogaster/genética , Eucromatina/genética , Variação Estrutural do Genoma/genética , Locos de Características Quantitativas/genética , Animais , Feminino , Perfilação da Expressão Gênica , Frequência do Gene , FenótipoRESUMO
Specific characteristics of the male Achroia grisella acoustic mating signal determine a male's attractiveness toward females. These features are genetically variable in populations, and mapping experiments have been used to identify loci contributing to song variation, and understand the evolutionary forces acting on this important sexual trait. Here we built on this foundation and carried out QTL (Quantitative Trait Locus) mapping using >1,000 recombinant individuals, genotyping this large cohort at thousands of sequence-based markers covering the entire collection of 30 A. grisella chromosomes. This dense marker set, coupled with our development of an annotated, draft genome of A. grisella, allowed us to link >3,000 genome scaffolds, >10,000 predicted genes, and close to 275Mb of genome sequence to chromosomes. Our QTL mapping confirmed a fraction of the QTL identified in a previous study, and additionally revealed novel loci. Collectively, QTL explained only small fractions of the phenotypic variance, suggesting many more causative factors remain below the detection threshold of our study. A surprising, and ultimately challenging feature of our study was the low level of intrachromosomal recombination present in our mapping population. This led to difficulty ordering markers along linkage groups, necessitating a chromosome-by-chromosome mapping approach, rather than true interval mapping, and precluded confident ordering/orienting of scaffolds along each chromosome. Nonetheless, our study increased the genomic resources available for the A. grisella system. Enabled by ever more powerful technologies, future investigators will be able to leverage our data to provide more detailed genetic dissection of male song variation in A. grisella.
Assuntos
Mapeamento Cromossômico , Genoma , Genômica , Mariposas/genética , Animais , Biologia Computacional/métodos , Ligação Genética , Marcadores Genéticos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Fenótipo , Locos de Características QuantitativasRESUMO
We leverage two complementary Drosophila melanogaster mapping panels to genetically dissect starvation resistance-an important fitness trait. Using >1600 genotypes from the multiparental Drosophila Synthetic Population Resource (DSPR), we map numerous starvation stress QTL that collectively explain a substantial fraction of trait heritability. Mapped QTL effects allowed us to estimate DSPR founder phenotypes, predictions that were correlated with the actual phenotypes of these lines. We observe a modest phenotypic correlation between starvation resistance and triglyceride level, traits that have been linked in previous studies. However, overlap among QTL identified for each trait is low. Since we also show that DSPR strains with extreme starvation phenotypes differ in desiccation resistance and activity level, our data imply multiple physiological mechanisms contribute to starvation variability. We additionally exploited the Drosophila Genetic Reference Panel (DGRP) to identify sequence variants associated with starvation resistance. Consistent with prior work these sites rarely fall within QTL intervals mapped in the DSPR. We were offered a unique opportunity to directly compare association mapping results across laboratories since two other groups previously measured starvation resistance in the DGRP. We found strong phenotypic correlations among studies, but extremely low overlap in the sets of genomewide significant sites. Despite this, our analyses revealed that the most highly associated variants from each study typically showed the same additive effect sign in independent studies, in contrast to otherwise equivalent sets of random variants. This consistency provides evidence for reproducible trait-associated sites in a widely used mapping panel, and highlights the polygenic nature of starvation resistance.
Assuntos
Aptidão Genética , Herança Multifatorial , Locos de Características Quantitativas , Característica Quantitativa Herdável , Estresse Fisiológico/genética , Animais , Drosophila melanogaster , Genoma de Inseto , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Inanição/genéticaRESUMO
In the process of generating herpes simplex virus 1 (HSV-1) mutations in the viral regulatory gene encoding infected cell protein 0 (ICP0), we isolated a viral mutant, termed KOS-NA, that was severely impaired for acute replication in the eyes and trigeminal ganglia (TG) of mice, defective in establishing a latent infection, and reactivated poorly from explanted TG. To identify the secondary mutation(s) responsible for the impaired phenotypes of this mutant, we sequenced the KOS-NA genome and noted that it contained two nonsynonymous mutations in UL39, which encodes the large subunit of ribonucleotide reductase, ICP6. These mutations resulted in lysine-to-proline (residue 393) and arginine-to-histidine (residue 950) substitutions in ICP6. To determine whether alteration of these amino acids was responsible for the KOS-NA phenotypes in vivo, we recombined the wild-type UL39 gene into the KOS-NA genome and rescued its acute replication phenotypes in mice. To further establish the role of UL39 in KOS-NA's decreased pathogenicity, the UL39 mutations were recombined into HSV-1 (generating UL39mut), and this mutant virus showed reduced ocular and TG replication in mice comparable to that of KOS-NA. Interestingly, ICP6 protein levels were reduced in KOS-NA-infected cells relative to the wild-type protein. Moreover, we observed that KOS-NA does not counteract caspase 8-induced apoptosis, unlike wild-type strain KOS. Based on alignment studies with other HSV-1 ICP6 homologs, our data suggest that amino acid 950 of ICP6 likely plays an important role in ICP6 accumulation and inhibition of apoptosis, consequently impairing HSV-1 pathogenesis in a mouse model of HSV-1 infection.IMPORTANCE HSV-1 is a major human pathogen that infects â¼80% of the human population and can be life threatening to infected neonates or immunocompromised individuals. Effective therapies for treatment of recurrent HSV-1 infections are limited, which emphasizes a critical need to understand in greater detail the events that modulate HSV-1 replication and pathogenesis. In the current study, we identified a neuroattenuated HSV-1 mutant (i.e., KOS-NA) that contains novel mutations in the UL39 gene, which codes for the large subunit of ribonucleotide reductase (also known as ICP6). This mutant form of ICP6 was responsible for the attenuation of KOS-NA in vivo and resulted in diminished ICP6 protein levels and antiapoptotic effect. Thus, we have determined that subtle alteration of the UL39 gene regulates expression and functions of ICP6 and severely impacts HSV-1 pathogenesis, potentially making KOS-NA a promising vaccine candidate against HSV-1.
Assuntos
Proteínas do Capsídeo , Herpes Simples , Herpesvirus Humano 1/fisiologia , Mutação Puntual , Ativação Viral/genética , Latência Viral/genética , Animais , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Herpes Simples/genética , Herpes Simples/metabolismo , Herpes Simples/patologia , Vacinas contra o Vírus do Herpes Simples/genética , Vacinas contra o Vírus do Herpes Simples/metabolismo , Camundongos , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/genéticaRESUMO
PREMISE OF THE STUDY: Although asexual taxa are generally seen as evolutionary dead ends, asexuality appears to provide a short-term benefit in some taxa, including a wider geographic distribution compared to sexual relatives. However, this may be an illusion created by multiple, morphologically cryptic, asexual lineages, each occupying a relatively small area. In this study we investigate the role of multiple lineages in the biogeography of Myriopteris gracilis Fée (Pteridaceae), a North American apomictic triploid fern species with a particularly large range. METHODS: Range-wide asexuality was assessed by counting spores/sporangium in 606 Myriopteris gracilis specimens from across the species range, and lineage structure was assessed with both plastid DNA sequence and Genotyping By Sequencing (GBS) SNP datasets. KEY RESULTS: Spore counting of >600 specimens identified no sexual populations, establishing that Myriopteris gracilis is exclusively asexual. The plastid data estimated the crown age of M. gracilis at ca. 2.5 mya and identified two lineages, each largely confined to the eastern or western portions of the range. These groups were further subdivided by the GBS data, revealing at least seven asexual lineages of varying geographic distributions, each occupying a relatively small portion of the total range of M. gracilis. CONCLUSIONS: Although maintained exclusively through asexual reproduction, the broad distribution of Myriopteris gracilis is a compilation of numerous, independently formed asexual lineages. Since no single asexual lineage occupies the full extent of the species distribution, recurrent lineage formation should be considered when evaluating the short-term benefit of asexuality in this taxon and others.
RESUMO
Identifying the sequence polymorphisms underlying complex trait variation is a key goal of genetics research, since knowing the precise causative molecular events allows insight into the pathways governing trait variation. Genetic analysis of complex traits in model systems regularly starts by constructing QTL maps, but generally fails to identify causative sequence polymorphisms. Previously we mapped a series of QTL contributing to resistance to nicotine in a Drosophila melanogaster multiparental mapping resource and here use a battery of functional tests to resolve QTL to the molecular level. One large-effect QTL resided over a cluster of UDP-glucuronosyltransferases, and quantitative complementation tests using deficiencies eliminating subsets of these detoxification genes revealed allelic variation impacting resistance. RNAseq showed that Ugt86Dd had significantly higher expression in genotypes that are more resistant to nicotine, and anterior midgut-specific RNA interference (RNAi) of this gene reduced resistance. We discovered a segregating 22-bp frameshift deletion in Ugt86Dd, and accounting for the InDel during mapping largely eliminates the QTL, implying the event explains the bulk of the effect of the mapped locus. CRISPR/Cas9 editing of a relatively resistant genotype to generate lesions in Ugt86Dd that recapitulate the naturally occurring putative loss-of-function allele, leads to a large reduction in resistance. Despite this major effect of the deletion, the allele appears to be very rare in wild-caught populations and likely explains only a small fraction of the natural variation for the trait. Nonetheless, this putatively causative coding InDel can be a launchpad for future mechanistic exploration of xenobiotic detoxification.