Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Radioact ; 228: 106513, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33360017

RESUMO

While radioisotopes of noble gases are known to be indicators of underground nuclear explosions (UNE), McIntyre et al. (2017) was the first to report the presence of 39Ar in shallow soil gas in association with a decades old UNE. While this finding hinted at the potential application of 39Ar to be used as an indicator of a UNE, doing so would also require an understanding of the natural concentrations of 39Ar present in soil gas. Without knowing the expected range and variability of naturally occurring concentrations of 39Ar, it is difficult to determine what measured concentrations would be indicative of an elevated concentration. This paper presents results from 16 soil gas samples and three atmospheric air samples collected from various locations across the western United States. Shallow soil gas samples were collected into self-contained underwater breathing apparatus (SCUBA) tanks using a custom-built soil gas sampling system and then processed and analyzed for 39Ar. The measured concentrations of 39Ar varied from atmospheric air concentrations to about 3.5 times atmospheric air concentrations (58 mBq/m3). The results presented here represent the first measurements of natural background 39Ar concentrations in shallow soil gas. This data will be necessary if 39Ar is to be used as an indicator of UNE.


Assuntos
Argônio , Radiação de Fundo , Monitoramento de Radiação , Radioisótopos , Poluentes Radioativos do Solo/análise , Argônio/análise , Radioisótopos/análise , Solo
2.
J Environ Radioact ; 208-209: 106047, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31526956

RESUMO

As part of an underground gas migration study, two radioactive noble gases (37Ar and 127Xe) and two stable tracer gases (SF6 and PFDMCH) were injected into a historic nuclear explosion test chimney and allowed to migrate naturally. The purpose of this experiment was to provide a bounding case (natural transport) for the flow of radioactive noble gases following an underground nuclear explosion. To accomplish this, soil gas samples were collected from a series of boreholes and a range of depths from the shallow subsurface (3 m) to deeper levels (~160 m) over a period of eleven months. These samples have provided insights into the development and evolution of the subsurface plume and constrained the relative migration rates of the radioactive and stable gas species in the case when the driving pressure from the cavity is low. Analysis of the samples concluded that the stable tracer SF6 was consistently enriched in the subsurface samples relative to the radiotracer 127Xe, but the ratios of SF6 and 37Ar remained similar throughout the samples.


Assuntos
Gases Nobres/análise , Armas Nucleares , Monitoramento de Radiação , Radioatividade , Explosões , Nevada , Medidas de Segurança
3.
J Environ Radioact ; 178-179: 28-35, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28755564

RESUMO

Pacific Northwest National Laboratory reports on the detection of 39Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of 39Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with 37Ar and 85Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish 39Ar from the fission product 85Kr. Proportional counters are currently used for high-sensitivity measurement of 37Ar and 39Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of 85Kr can be mistaken for that of 39Ar, and the presence of either isotope increases the measurement background level for the measurement of 37Ar. Measured values for the 39Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion.


Assuntos
Argônio/análise , Armas Nucleares , Monitoramento de Radiação , Poluentes Radioativos/análise , Nevada
4.
Appl Radiat Isot ; 126: 243-248, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28236555

RESUMO

This paper describes the generation of 39Ar, via reactor irradiation of potassium carbonate, followed by quantitative analysis (length-compensated proportional counting) to yield two calibration standards that are respectively 50 and 3 times atmospheric background levels. Measurements were performed in Pacific Northwest National Laboratory's shallow underground counting laboratory studying the effect of gas density on beta-transport; these results are compared with simulation. The total expanded uncertainty of the specific activity for the ~50× 39Ar in P10 standard is 3.6% (k=2).

5.
J Environ Radioact ; 155-156: 122-129, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26990077

RESUMO

Simultaneous measurement of tritium and (14)C would provide an added tool for tracing organic compounds through environmental systems and is possible via beta energy spectroscopy of sample-derived methane in internal-source gas proportional counters. Since the mid-1960's atmospheric tritium and (14)C have fallen dramatically as the isotopic injections from aboveground nuclear testing have been diluted into the ocean and biosphere. In this work, the feasibility of simultaneous tritium and (14)C measurements via proportional counters is revisited in light of significant changes in both the atmospheric and biosphere isotopics and the development of new ultra-low-background gas proportional counting capabilities for small samples (roughly 50 cc methane). A Geant4 Monte Carlo model of a Pacific Northwest National Laboratory (PNNL) proportional counter response to tritium and (14)C is used to analyze small samples of two different methane sources to illustrate the range of applicability of contemporary simultaneous measurements and their limitations. Because the two methane sources examined were not sample size limited, we could compare the small-sample measurements performed at PNNL with analysis of larger samples performed at a commercial laboratory. These first results show that the dual-isotope simultaneous measurement is well matched for methane samples that are atmospheric or have an elevated source of tritium (i.e. landfill gas). However, for samples with low/modern tritium isotopics (rainwater), commercial separation and counting is a better fit.


Assuntos
Radioisótopos de Carbono/análise , Metano/análise , Monitoramento de Radiação/métodos , Trítio/análise , Gases/análise , Modelos Teóricos , Instalações de Eliminação de Resíduos , Purificação da Água
6.
Appl Radiat Isot ; 108: 92-99, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26720259

RESUMO

Development of ultra low background gas proportional counters has made the contribution from naturally occurring radioactive isotopes - primarily α and ß activity in the uranium and thorium decay chains - inconsequential to instrumental sensitivity levels when measurements are performed in above ground surface laboratories. Simple lead shielding is enough to mitigate against gamma rays as gas proportional counters are already relatively insensitive to naturally occurring gamma radiation. The dominant background in these surface laboratory measurements using ultra low background gas proportional counters is due to cosmic ray generated muons, neutrons, and protons. Studies of measurements with ultra low background gas proportional counters in surface and underground laboratories as well as radiation transport Monte Carlo simulations suggest a preferred conceptual design to achieve the highest possible sensitivity from an array of low background gas proportional counters when operated in a surface laboratory. The basis for a low background gas proportional counter array and the preferred shielding configuration is reported, especially in relation to measurements of radioactive gases having low energy decays such as (37)Ar.

7.
Appl Radiat Isot ; 109: 430-434, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26701655

RESUMO

Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level (37)Ar standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level (37)Ar standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.

8.
Appl Radiat Isot ; 81: 179-83, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23597417

RESUMO

Pacific Northwest National Laboratory (PNNL) is developing a capability to measure the absolute activity concentration of gaseous radionuclides using length-compensated proportional-counting. This capability will enable the validation of low-level calibration standards for use in PNNL's new shallow underground laboratory. Two sets of unequal length proportional counters have been fabricated; one set has been fabricated using ultra-low background (ULB) electroformed copper and a second set fabricated from Oxygen-Free High-Conductivity Copper (OFHC).


Assuntos
Gases/química , Radioisótopos/análise , Contagem de Cintilação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Appl Radiat Isot ; 81: 151-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23623763

RESUMO

A new ultra-low-background proportional counter was recently developed with an internal volume of 100 cm(3) and has been characterized at pressures from 1-10 atm with P-10 (90% Ar, 10% methane) gas. This design, along with a counting system providing event digitization and passive and active shielding, has been developed to complement a new shallow underground laboratory (30 m water-equivalent). Backgrounds and low-level reference materials have been measured, and system sensitivity for (37)Ar has been calculated.


Assuntos
Argônio/análise , Gases/análise , Laboratórios , Radioisótopos/análise , Contagem de Cintilação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
10.
Rev Sci Instrum ; 83(11): 113503, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23206058

RESUMO

Pacific Northwest National Laboratory recently commissioned a new shallow underground laboratory, located at a depth of approximately 30 meters-water-equivalent. This new addition to the small class of radiation measurement laboratories located at modest underground depths houses the latest generation of custom-made, high-efficiency, low-background gamma-ray spectrometers and gas proportional counters. This paper describes the unique capabilities present in the shallow underground laboratory; these include large-scale ultra-pure materials production and a suite of radiation detection systems. Reported data characterize the degree of background reduction achieved through a combination of underground location, graded shielding, and rejection of cosmic-ray events. We conclude by presenting measurement targets and future opportunities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA