Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
1.
Exp Brain Res ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822824

RESUMO

Sinusoidal galvanic vestibular stimulation (sGVS) induces robust modulation of muscle sympathetic nerve activity (MSNA) alongside perceptions of side-to-side movement, sometimes with an accompanying feeling of nausea. We recently showed that transcranial alternating current stimulation (tACS) of the dorsolateral prefrontal cortex (dlPFC) also modulates MSNA, but does not generate any perceptions. Here, we tested the hypothesis that when the two stimuli are given concurrently, the modulation of MSNA would be additive. MSNA was recorded from 11 awake participants via a tungsten microelectrode inserted percutaneously into the right common peroneal nerve at the fibular head. Sinusoidal stimuli (± 2 mA, 0.08 Hz, 100 cycles) were applied in randomised order as follows: (i) tACS of the dlPFC at electroencephalogram (EEG) site F4 and referenced to the nasion; (ii) bilateral sGVS applied to the vestibular apparatuses via the mastoid processes; and (iii) tACS and sGVS together. Previously obtained data from 12 participants supplemented the data for stimulation protocols (i) and (ii). Cross-correlation analysis revealed that each stimulation protocol caused significant modulation of MSNA (modulation index (paired data): 35.2 ± 19.4% for sGVS; 27.8 ± 15.2% for tACS), but there were no additive effects when tACS and sGVS were delivered concurrently (32.1 ± 18.5%). This implies that the vestibulosympathetic reflexes are attenuated with concurrent dlPFC stimulation. These results suggest that the dlPFC is capable of blocking the processing of vestibular inputs through the brainstem and, hence, the generation of vestibulosympathetic reflexes.

2.
Cereb Cortex ; 34(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38839074

RESUMO

Skin sympathetic nerve activity (SSNA) is primarily involved in thermoregulation and emotional expression; however, the brain regions involved in the generation of SSNA are not completely understood. In recent years, our laboratory has shown that blood-oxygen-level-dependent signal intensity in the ventromedial prefrontal cortex (vmPFC) and dorsolateral prefrontal cortex (dlPFC) are positively correlated with bursts of SSNA during emotional arousal and increases in signal intensity in the vmPFC occurring with increases in spontaneous bursts of SSNA even in the resting state. We have recently shown that unilateral transcranial alternating current stimulation (tACS) of the dlPFC causes modulation of SSNA but given that the current was delivered between electrodes over the dlPFC and the nasion, it is possible that the effects were due to current acting on the vmPFC. To test this, we delivered tACS to target the right vmPFC or dlPFC and nasion and recorded SSNA in 11 healthy participants by inserting a tungsten microelectrode into the right common peroneal nerve. The similarity in SSNA modulation between ipsilateral vmPFC and dlPFC suggests that the ipsilateral vmPFC, rather than the dlPFC, may be causing the modulation of SSNA during ipsilateral dlPFC stimulation.


Assuntos
Córtex Pré-Frontal , Pele , Sistema Nervoso Simpático , Estimulação Transcraniana por Corrente Contínua , Humanos , Córtex Pré-Frontal/fisiologia , Masculino , Feminino , Adulto , Sistema Nervoso Simpático/fisiologia , Adulto Jovem , Pele/inervação , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Elétrica/métodos , Nervo Fibular/fisiologia , Lateralidade Funcional/fisiologia
3.
J Neurophysiol ; 131(6): 1168-1174, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629146

RESUMO

Microneurographic recordings of muscle sympathetic nerve activity (MSNA) reflect postganglionic sympathetic axonal activity directed toward the skeletal muscle vasculature. Recordings are typically evaluated for spontaneous bursts of MSNA; however, the filtering and integration of raw neurograms to obtain multiunit bursts conceals the underlying c-fiber discharge behavior. The continuous wavelet transform with matched mother wavelet has permitted the assessment of action potential discharge patterns, but this approach uses a mother wavelet optimized for an amplifier that is no longer commercially available (University of Iowa Bioengineering Nerve Traffic Analysis System; Iowa NTA). The aim of this project was to determine the morphology and action potential detection performance of mother wavelets created from the commercially available NeuroAmp (ADinstruments), from distinct laboratories, compared with a mother wavelet generated from the Iowa NTA. Four optimized mother wavelets were generated in a two-phase iterative process from independent datasets, collected by separate laboratories (one Iowa NTA, three NeuroAmp). Action potential extraction performance of each mother wavelet was compared for each of the NeuroAmp-based datasets. The total number of detected action potentials was not significantly different across wavelets. However, the predictive value of action potential detection was reduced when the Iowa NTA wavelet was used to detect action potentials in NeuroAmp data, but not different across NeuroAmp wavelets. To standardize approaches, we recommend a NeuroAmp-optimized mother wavelet be used for the evaluation of sympathetic action potential discharge behavior when microneurographic data are collected with this system.NEW & NOTEWORTHY The morphology of custom mother wavelets produced across laboratories using the NeuroAmp was highly similar, but distinct from the University of Iowa Bioengineering Nerve Traffic Analysis System. Although the number of action potentials detected was similar between collection systems and mother wavelets, the predictive value differed. Our data suggest action potential analysis using the continuous wavelet transform requires a mother wavelet optimized for the collection system.


Assuntos
Potenciais de Ação , Análise de Ondaletas , Potenciais de Ação/fisiologia , Animais , Sistema Nervoso Simpático/fisiologia , Músculo Esquelético/fisiologia , Masculino
4.
Clin Auton Res ; 34(2): 297-301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502257

RESUMO

Increased sympathetic drive is of prognostic significance in chronic obstructive pulmonary disease (COPD) but its determinants remain poorly understood. One potential mechanism may be chemoreflex-mediated adrenergic stimulation caused by sustained hypercapnia. This study determined the impact of non-invasive ventilation (NIV) on muscle sympathetic nerve activity (MSNA) in patients with stable hypercapnic COPD. Ten patients (age 70 ± 7 years, GOLD stage 3-4) receiving long-term NIV (mean inspiratory positive airway pressure 21 ± 7 cmH2O) underwent invasive MSNA measurement via the peroneal nerve during spontaneous breathing and NIV. Compared with spontaneous breathing, NIV significantly reduced hypercapnia (PaCO2 51.5 ± 6.9 vs 42.6 ± 6.1 mmHg, p < 0.0001) along with the burst rate (64.4 ± 20.9 vs 59.2 ± 19.9 bursts/min, p = 0.03) and burst incidence (81.7 ± 29.3 vs 74.1 ± 26.9 bursts/100 heartbeats, p = 0.04) of MSNA. This shows for the first time that correcting hypercapnia with NIV decreases MSNA in COPD.


Assuntos
Hipercapnia , Músculo Esquelético , Ventilação não Invasiva , Doença Pulmonar Obstrutiva Crônica , Sistema Nervoso Simpático , Humanos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/terapia , Hipercapnia/terapia , Hipercapnia/fisiopatologia , Ventilação não Invasiva/métodos , Masculino , Idoso , Sistema Nervoso Simpático/fisiopatologia , Feminino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Músculo Esquelético/inervação
5.
Hypertension ; 81(6): e63-e70, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506059

RESUMO

BACKGROUND: Renal denervation is a recognized adjunct therapy for hypertension with clinically significant blood pressure (BP)-lowering effects. Long-term follow-up data are critical to ascertain durability of the effect and safety. Aside from the 36-month follow-up data available from randomized control trials, recent cohort analyses extended follow-up out to 10 years. We sought to analyze study-level data and quantify the ambulatory BP reduction of renal denervation across contemporary randomized sham-controlled trials and available long-term follow-up data up to 10 years from observational studies. METHODS: A systematic review was performed with data from 4 observational studies with follow-up out to 10 years and 2 randomized controlled trials meeting search and inclusion criteria with follow-up data out to 36 months. Study-level data were extracted and compared statistically. RESULTS: In 2 contemporary randomized controlled trials with 36-month follow-up, an average sham-adjusted ambulatory systolic BP reduction of -12.7±4.5 mm Hg from baseline was observed (P=0.05). Likewise, a -14.8±3.4 mm Hg ambulatory systolic BP reduction was found across observational studies with a mean long-term follow-up of 7.7±2.8 years (range, 3.5-9.4 years; P=0.0051). The observed reduction in estimated glomerular filtration rate across the long-term follow-up was in line with the predicted age-related decline. Antihypertensive drug burden was similar at baseline and follow-up. CONCLUSIONS: Renal denervation is associated with a significant and clinically meaningful reduction in ambulatory systolic BP in both contemporary randomized sham-controlled trials up to 36 months and observational cohort studies up to 10 years without adverse consequences on renal function.


Assuntos
Pressão Sanguínea , Hipertensão , Rim , Simpatectomia , Humanos , Hipertensão/cirurgia , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Pressão Sanguínea/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Rim/inervação , Simpatectomia/métodos , Ablação por Cateter/métodos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Monitorização Ambulatorial da Pressão Arterial/métodos
6.
Clin Auton Res ; 34(1): 177-189, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308178

RESUMO

PURPOSE: Sympathetic nerve activity towards muscle (MSNA) and skin (SSNA) regulates various physiological parameters. MSNA primarily functions in blood pressure and flow, while SSNA operates in thermoregulation. Physical and cognitive stressors have been shown to have effects on both types of sympathetic activity, but there are inconsistencies as to what these effects are. This article aims to address the discrepancies in the literature and compare MSNA and SSNA responses. METHODS: Microelectrode recordings were taken from the common peroneal nerve in 29 participants: MSNA (n = 21), SSNA (n = 16) and both MSNA and SSNA (n = 8). Participants were subjected to four different 2-min stressors: two physical (isometric handgrip task, cold pressor test) and two cognitive (mental arithmetic task, Stroop colour-word conflict test), the latter of which saw participants separated into responders and non-responders to the stressors. It was hypothesised that the physical stressors would have a greater effect on MSNA than SSNA, while the cognitive stressors would operate conversely. RESULTS: Peristimulus time histogram (PSTH) analysis showed the mental arithmetic task to significantly increase both MSNA and SSNA; the isometric handgrip task and cold pressor test to increase MSNA, but not SSNA; and Stroop test to have no significant effects on changing MSNA or SSNA from baseline. Additionally, stress responses did not differ between MSNA and SSNA in participants who had both sets of data recorded. CONCLUSIONS: This study has provided evidence to support the literature which claims cognitive stressors increase sympathetic activity, and provides much needed SSNA data in response to stressors.


Assuntos
Força da Mão , Pele , Humanos , Pele/inervação , Músculos/inervação , Pressão Sanguínea/fisiologia , Sistema Nervoso Simpático/fisiologia , Cognição , Músculo Esquelético/inervação
7.
8.
J Physiol ; 602(6): 991-992, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38401033
9.
J Hypertens ; 42(5): 922-927, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230602

RESUMO

BACKGROUND: Renal denervation (RDN) has been consistently shown in recent sham-controlled clinical trials to reduce blood pressure (BP). Salt sensitivity is a critical factor in hypertension pathogenesis, but cumbersome to assess by gold-standard methodology. Twenty-four-hour average heart rate (HR) and mean arterial pressure (MAP) dipping, taken by ambulatory blood pressure monitoring (ABPM), stratifies patients into high, moderate, and low salt sensitivity index (SSI) risk categories. OBJECTIVES: We aimed to assess whether ABPM-derived SSI risk could predict the systolic blood pressure reduction at long-term follow-up in a real-world RDN patient cohort. METHODS: Sixty participants had repeat ABPM as part of a renal denervation long-term follow-up. Average time since RDN was 8.9 ±â€Š1.2 years. Based on baseline ABPM, participants were stratified into low (HR < 70 bpm and MAP dipping > 10%), moderate (HR ≥70 bpm or MAP dipping ≤ 10%), and high (HR ≥ 70 bpm and MAP dipping ≤ 10%) SSI risk groups, respectively. RESULTS: One-way ANOVA indicated a significant treatment effect ( P  = 0.03) between low ( n  = 15), moderate ( n  = 35), and high ( n  = 10) SSI risk with systolic BP reduction of 9.6 ±â€Š3.7 mmHg, 8.4 ±â€Š3.5 mmHg, and 28.2 ±â€Š9.6 mmHg, respectively. Baseline BP was not significantly different between SSI Risk groups ( P  = 0.18). High SSI risk independently correlated with systolic BP reduction ( P  = 0.02). CONCLUSIONS: Our investigation indicates that SSI risk may be a simple and accessible measure for predicting the BP response to RDN. However, the influence of pharmacological therapy on these participants is an important extraneous variable requiring testing in prospective or drug naive RDN cohorts.


Assuntos
Hipertensão , Hipotensão , Humanos , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Frequência Cardíaca , Estudos Prospectivos , Rim , Denervação/métodos , Simpatectomia/efeitos adversos , Simpatectomia/métodos , Resultado do Tratamento
11.
J Physiol ; 602(5): 763, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38261450
12.
Exp Physiol ; 109(1): 27-34, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029664

RESUMO

Hereditary sensory and autonomic neuropathy type III (HSAN III), also known as familial dysautonomia or Riley-Day syndrome, results from an autosomal recessive genetic mutation that causes a selective loss of specific sensory neurones, leading to greatly elevated pain and temperature thresholds, poor proprioception, marked ataxia and disturbances in blood pressure control. Stretch reflexes are absent throughout the body, which can be explained by the absence of functional muscle spindle afferents - assessed by intraneural microelectrodes inserted into peripheral nerves in the upper and lower limbs. This also explains the greatly compromised proprioception at the knee joint, as assessed by passive joint-angle matching. Moreover, there is a tight correlation between loss of proprioceptive acuity at the knee and the severity of gait impairment. Surprisingly, proprioception is normal at the elbow, suggesting that participants are relying more on sensory cues from the overlying skin; microelectrode recordings have shown that myelinated tactile afferents in the upper and lower limbs appear to be normal. Nevertheless, the lack of muscle spindles does affect sensorimotor control in the upper limb: in addition to poor performance in the finger-to-nose test, manual performance in the Purdue pegboard task is much worse than in age-matched healthy controls. Unlike those rare individuals with large-fibre sensory neuropathy, in which both muscle spindle and cutaneous afferents are absent, those with HSAN III present as a means of assessing sensorimotor control following the selective loss of muscle spindle afferents.


Assuntos
Disautonomia Familiar , Fusos Musculares , Humanos , Fusos Musculares/fisiologia , Nervos Periféricos , Reflexo de Estiramento , Joelho
13.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37950875

RESUMO

We recently showed that transcranial alternating current stimulation of the dorsolateral prefrontal cortex modulates spontaneous bursts of muscle sympathetic nerve activity, heart rate, and blood pressure (Sesa-Ashton G, Wong R, McCarthy B, Datta S, Henderson LA, Dawood T, Macefield VG. Stimulation of the dorsolateral prefrontal cortex modulates muscle sympathetic nerve activity and blood pressure in humans. Cereb Cortex Comm. 2022:3:2tgac017.). Stimulation was delivered between scalp electrodes placed over the nasion and electroencephalogram (EEG) electrode site F3 (left dorsolateral prefrontal cortex) or F4 (right dorsolateral prefrontal cortex), and therefore the current passed within the anatomical locations underlying the left and right ventromedial prefrontal cortices. Accordingly, we tested the hypothesis that stimulation of the left and right ventromedial prefrontal cortices would also modulate muscle sympathetic nerve activity, although we predicted that this would be weaker than that seen during dorsolateral prefrontal cortex stimulation. We further tested whether stimulation of the right ventromedial prefrontal cortices would cause greater modulation of muscle sympathetic nerve activity, than stimulation of the left ventromedial prefrontal cortices. In 11 individuals, muscle sympathetic nerve activity was recorded via microelectrodes inserted into the right common peroneal nerve, together with continuous blood pressure, electrocardiogram, and respiration. Stimulation was achieved using transcranial alternating current stimulation, +2 to -2 mA, 0.08 Hz, 100 cycles, applied between electrodes placed over the nasion, and EEG electrode site FP1, (left ventromedial prefrontal cortices) or FP2 (right ventromedial prefrontal cortices); for comparison, stimulation was also applied over F4 (right dorsolateral prefrontal cortex). Stimulation of all three cortical sites caused partial entrainment of muscle sympathetic nerve activity to the sinusoidal stimulation, together with modulation of blood pressure and heart rate. We found a significant fall in mean blood pressure of ~6 mmHg (P = 0.039) during stimulation of the left ventromedial prefrontal cortices, as compared with stimulation of the right. We have shown, for the first time, that transcranial alternating current stimulation of the ventromedial prefrontal cortices modulates muscle sympathetic nerve activity and blood pressure in awake humans at rest. However, it is unclear if this modulation occurred through the same brain pathways activated during transcranial alternating current stimulation of the dorsolateral prefrontal cortex.


Assuntos
Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Pressão Sanguínea/fisiologia , Córtex Pré-Frontal/fisiologia , Encéfalo , Estimulação Elétrica , Músculos
16.
Exp Brain Res ; 241(11-12): 2845-2853, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37902866

RESUMO

The vestibular apparatus provides spatial information on the position of the head in space and with respect to gravity. Low-frequency sinusoidal galvanic vestibular stimulation (sGVS), a means of selectively changing the firing of vestibular afferents, induces a frequency-dependent perception of sway and, in some individuals, induces nausea. Given that vestibular afferents project to the insular cortex-which forms part of the vestibular cortex-and that the insula receives inputs from the dorsolateral prefrontal cortex (dlPFC), we tested the hypothesis that electrical stimulation of the dlPFC can modulate vestibular inputs. Sinusoidal electrical stimulation (± 2 mA, 0.08 Hz, 100 cycles) was delivered via surface electrodes over (1) the mastoid processes alone (sGVS), (2) electroencephalogram (EEG) site F4 (right dlPFC) and the nasion or (3) to each site concurrently (sGVS + dlPFC) in 23 participants. The same stimulation protocol was used in a separate study to investigate EEG site F3 (left dlPFC) instead of F4 in 13 participants. During sGVS, all participants reported perceptions of sway and 13 participants also reported nausea, neither sensation of which occurred as a result of dlPFC stimulation. Interestingly, when sGVS and dlPFC stimulations were delivered concurrently, vestibular perceptions and sensations of nausea were almost completely abolished. We conclude that the dlPFC provides top-down control of vestibular inputs and further suggests that dlPFC stimulation may provide a novel means of controlling nausea.


Assuntos
Córtex Pré-Frontal Dorsolateral , Vestíbulo do Labirinto , Humanos , Vestíbulo do Labirinto/fisiologia , Estimulação Elétrica/métodos , Eletroencefalografia , Náusea , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana/métodos
17.
Clin Auton Res ; 33(6): 647-657, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37543558

RESUMO

PURPOSE: Sleep duration is associated with risk of hypertension and cardiovascular diseases. It is thought that shorter sleep increases sympathetic activity. However, most studies are based on acute experimental sleep deprivation that have produced conflicting results. Furthermore, there are limited data available on habitual sleep duration and gold-standard measures of sympathetic activation. Hence, this study aimed to assess the association between habitual sleep duration and muscle sympathetic nerve activity. METHODS: Twenty-four participants aged ≥ 18 years were included in the study. Sleep was assessed using at-home 7-day/night actigraphy (ActiGraph™ GT3X-BT) and sleep questionnaires (Pittsburgh Sleep Quality Index and Epworth Sleepiness Scale). Microelectrode recordings of muscle sympathetic nerve activity were obtained from the common peroneal nerve. Participants were categorised into shorter or longer sleep duration groups using a median split of self-report and actigraphy sleep measures. RESULTS: Compared to longer sleepers, shorter sleepers averaged 99 ± 40 min and 82 ± 40 min less sleep per night as assessed by self-report and objective measures, respectively. There were no differences in age (38 ± 18 vs 39 ± 21 years), sex (5 male, 7 female vs 6 male, 6 female), or body mass index (23 ± 3 vs 22 ± 3 kg/m2) between shorter and longer sleepers. Expressed as burst frequency, muscle sympathetic nerve activity was higher in shorter versus longer sleepers for both self-report (39.4 ± 12.9 vs 28.4 ± 8.5 bursts/min, p = 0.019) and objective (37.9 ± 12.4 vs 28.1 ± 8.8 bursts/min, p = 0.036) sleep duration. CONCLUSIONS: Shorter sleep duration assessed in a home setting was associated with higher muscle sympathetic nerve activity. Sympathetic overactivity may underlie the association between short sleep and hypertension.


Assuntos
Hipertensão , Transtornos do Sono-Vigília , Humanos , Masculino , Feminino , Duração do Sono , Sono/fisiologia , Privação do Sono/complicações , Músculos
18.
R Soc Open Sci ; 10(8): 221382, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37650068

RESUMO

The onset of stress triggers sympathetic arousal (SA), which causes detectable changes to physiological parameters such as heart rate, blood pressure, dilation of the pupils and sweat release. The objective quantification of SA has tremendous potential to prevent and manage psychological disorders. Photoplethysmography (PPG), a non-invasive method to measure skin blood flow changes, has been used to estimate SA indirectly. However, the impact of various wavelengths of the PPG signal has not been investigated for estimating SA. In this study, we explore the feasibility of using various statistical and nonlinear features derived from peak-to-peak (AC) values of PPG signals of different wavelengths (green, blue, infrared and red) to estimate stress-induced changes in SA and compare their performances. The impact of two physical stressors: and Hand Grip are studied on 32 healthy individuals. Linear (Mean, s.d.) and nonlinear (Katz, Petrosian, Higuchi, SampEn, TotalSampEn) features are extracted from the PPG signal's AC amplitudes to identify the onset, continuation and recovery phases of those stressors. The results show that the nonlinear features are the most promising in detecting stress-induced sympathetic activity. TotalSampEn feature was capable of detecting stress-induced changes in SA for all wavelengths, whereas other features (Petrosian, AvgSampEn) are significant (AUC ≥ 0.8) only for IR and Red wavelengths. The outcomes of this study can be used to make device design decisions as well as develop stress detection algorithms.

19.
Cereb Cortex ; 33(17): 9822-9834, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37415068

RESUMO

Prior experiences, conditioning cues, and expectations of improvement are essential for placebo analgesia expression. The dorsolateral prefrontal cortex is considered a key region for converting these factors into placebo responses. Since dorsolateral prefrontal cortex neuromodulation can attenuate or amplify placebo, we sought to investigate dorsolateral prefrontal cortex biochemistry and function in 38 healthy individuals during placebo analgesia. After conditioning participants to expect pain relief from a placebo "lidocaine" cream, we collected baseline magnetic resonance spectroscopy (1H-MRS) at 7 Tesla over the right dorsolateral prefrontal cortex. Following this, functional magnetic resonance imaging scans were collected during which identical noxious heat stimuli were delivered to the control and placebo-treated forearm sites. There was no significant difference in the concentration of gamma-aminobutyric acid, glutamate, Myo-inositol, or N-acetylaspartate at the level of the right dorsolateral prefrontal cortex between placebo responders and nonresponders. However, we identified a significant inverse relationship between the excitatory neurotransmitter glutamate and pain rating variability during conditioning. Moreover, we found placebo-related activation within the right dorsolateral prefrontal cortex and altered functional magnetic resonance imaging coupling between the dorsolateral prefrontal cortex and the midbrain periaqueductal gray, which also correlated with dorsolateral prefrontal cortex glutamate. These data suggest that the dorsolateral prefrontal cortex formulates stimulus-response relationships during conditioning, which are then translated to altered cortico-brainstem functional relationships and placebo analgesia expression.


Assuntos
Analgesia , Córtex Pré-Frontal Dorsolateral , Humanos , Dor , Analgesia/métodos , Tronco Encefálico , Imageamento por Ressonância Magnética/métodos , Glutamatos , Córtex Pré-Frontal/diagnóstico por imagem
20.
Compr Physiol ; 13(3): 4811-4832, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37358512

RESUMO

The vestibular apparatus is highly specialized for detecting linear and angular acceleration, contributing importantly to perception of our position in the gravitational field and to motion in the three spatial axes. Beginning in the inner ear, spatial information is relayed toward higher cortical regions for processing, though the specific locations at which this action takes place remain somewhat ambiguous. This article aims to highlight brain regions known to be involved in the processing of spatial information, as well as those that contribute to a less widely documented function of the vestibular system-its capacity to regulate blood pressure via vestibulosympathetic reflexes. As we go from lying to standing, there is a proportional increase in muscle sympathetic nerve activity (MSNA) to the legs that prevents the fall in blood pressure associated with the pooling of blood toward the feet. While feedback from baroreceptors is partially responsible, vestibulosympathetic reflexes operate in a feed-forward manner to compensate for postural changes in the gravitational field. The cortical and subcortical network comprising the central sympathetic connectome shares certain elements with the vestibular system, and it is known that vestibular afferents project via the vestibular nuclei to the rostral ventrolateral medulla (RVLM)-the final output nucleus for generating MSNA. Here we consider how vestibular afferents interact with other components of the central sympathetic connectome, with particular emphasis on the potential roles of the insula and dorsolateral prefrontal cortex (dlPFC) as possible core integrative sites for vestibular and higher cortical processes. © 2023 American Physiological Society. Compr Physiol 13:4811-4832, 2023.


Assuntos
Reflexo , Vestíbulo do Labirinto , Humanos , Pressão Sanguínea/fisiologia , Reflexo/fisiologia , Vestíbulo do Labirinto/inervação , Vestíbulo do Labirinto/fisiologia , Sistema Nervoso Simpático/fisiologia , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA