Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 12(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033452

RESUMO

Submucosal injection is generally required for both endoscopic-mucosal resection (EMR) and submucosal dissection (ESD). SIC-8000 (Eleview®) is a new liquid composition in the form of a microemulsion for submucosal injection, approved by the Food and Drug Administration (FDA) 510(k) and Conformité Européene (CE) marked, containing a biocompatible polymer as a cushioning agent. The aim of this study was to evaluate Eleview®'s performance in terms of bioadhesive properties and cushion-forming ability. The bioadhesion was evaluated by measuring the interaction between Eleview® and the extracellular matrix (the main component of the submucosal layer) using the texture analyzer. To better comprehend the mechanism of action of Eleview® after submucosal injection, force of detachment and adhesion work were measured for the following formulations: Eleview®, Eleview® without poloxamer (functional polymer), poloxamer solution alone, normal saline, and MucoUp® (competing product on the Japanese market). The results obtained show the interaction between Eleview® and the extracellular matrix, highlighting the stronger bioadhesive properties of Eleview® compared with Eleview® without poloxamer, poloxamer solution alone, as well as normal saline and MucoUp®. The ability of Eleview® to form a consistent and long-lasting cushion in situ, once injected into the submucosal layer, was tested ex vivo on a porcine stomach. The results obtained show a better permanence in situ for the product compared with normal saline injection and to MucoUp® (t-test, p < 0.05).

2.
Pharmaceutics ; 11(11)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739619

RESUMO

The aim of the present work was the development of an innovative in situ gelling system, to be applied on the mucosa of the distal colon via rectal route. The system consisted of three polymers having different functions: gellan (GG), able to jellify in presence of ions; methylcellulose (MC), a thermosensitive polymer with a gelation temperature close to 50 °C; and hydroxypropylcellulose (HPC), a mucoadhesive polymer. The three polymers were able to act synergistically, increasing the permanence of the vehicle on the mucosa and forming a protective gel layer. A DoE approach, "simplex centroid mixture design," was used to identify the optimal quantitative composition of the vehicle. The response variables considered were: vehicle viscosity at room temperature; increase in vehicle viscosity on increasing temperature (from room to physiological value) and upon dilution with simulated colonic fluid (SCF); and viscoelastic behavior, thixotropic area, and mucoadhesion properties of the gel formed at 37 °C upon dilution in SCF. The optimized vehicle was loaded with maqui berry extract (MBE), known for its antioxidant and anti-inflammatory properties. MBE loading (0.5% w/w) into the vehicle improved rheological and mucoadhesive properties of the formulation. Both MBE and the optimized vehicle were not cytotoxic towards human fibroblasts and Caco-2 cells. Moreover, the optimized vehicle did not affect MBE antioxidant properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA