Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Infect Control Hosp Epidemiol ; 45(6): 709-716, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38344902

RESUMO

OBJECTIVES: New Delhi metallo-ß-lactamases (NDMs) are major contributors to the spread of carbapenem resistance globally. In Australia, NDMs were previously associated with international travel, but from 2019 we noted increasing incidence of NDM-positive clinical isolates. We investigated the clinical and genomic epidemiology of NDM carriage at a tertiary-care Australian hospital from 2016 to 2021. METHODS: We identified 49 patients with 84 NDM-carrying isolates in an institutional database, and we collected clinical data from electronic medical record. Short- and long-read whole genome sequencing was performed on all isolates. Completed genome assemblies were used to assess the genetic setting of blaNDM genes and to compare NDM plasmids. RESULTS: Of 49 patients, 38 (78%) were identified in 2019-2021 and only 11 (29%) of 38 reported prior travel, compared with 9 (82%) of 11 in 2016-2018 (P = .037). In patients with NDM infection, the crude 7-day mortality rate was 0% and the 30-day mortality rate was 14% (2 of 14 patients). NDMs were noted in 41 bacterial strains (ie, species and sequence type combinations). Across 13 plasmid groups, 4 NDM variants were detected: blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-7. We noted a change from a diverse NDM plasmid repertoire in 2016-2018 to the emergence of conserved blaNDM-1 IncN and blaNDM-7 IncX3 epidemic plasmids, with interstrain spread in 2019-2021. These plasmids were noted in 19 (50%) of 38 patients and 35 (51%) of 68 genomes in 2019-2021. CONCLUSIONS: Increased NDM case numbers were due to local circulation of 2 epidemic plasmids with extensive interstrain transfer. Our findings underscore the challenges of outbreak detection when horizontal transmission of plasmids is the primary mode of spread.


Assuntos
Surtos de Doenças , Plasmídeos , beta-Lactamases , Humanos , beta-Lactamases/genética , Plasmídeos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Austrália/epidemiologia , Sequenciamento Completo do Genoma , Adulto , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/transmissão , Infecções por Enterobacteriaceae/microbiologia , Transferência Genética Horizontal , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Genoma Bacteriano
2.
J Biomed Inform ; 147: 104509, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37827477

RESUMO

The adoption of electronic health records (EHRs) has created opportunities to analyse historical data for predicting clinical outcomes and improving patient care. However, non-standardised data representations and anomalies pose major challenges to the use of EHRs in digital health research. To address these challenges, we have developed EHR-QC, a tool comprising two modules: the data standardisation module and the preprocessing module. The data standardisation module migrates source EHR data to a standard format using advanced concept mapping techniques, surpassing expert curation in benchmarking analysis. The preprocessing module includes several functions designed specifically to handle healthcare data subtleties. We provide automated detection of data anomalies and solutions to handle those anomalies. We believe that the development and adoption of tools like EHR-QC is critical for advancing digital health. Our ultimate goal is to accelerate clinical research by enabling rapid experimentation with data-driven observational research to generate robust, generalisable biomedical knowledge.


Assuntos
Benchmarking , Registros Eletrônicos de Saúde , Humanos , Pesquisa Empírica , Projetos de Pesquisa
3.
Nat Commun ; 14(1): 4764, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553339

RESUMO

Infections caused by metallo-beta-lactamase-producing organisms (MBLs) are a global health threat. Our understanding of transmission dynamics and how MBLs establish endemicity remains limited. We analysed two decades of blaIMP-4 evolution in a hospital using sequence data from 270 clinical and environmental isolates (including 169 completed genomes) and identified the blaIMP-4 gene across 7 Gram-negative genera, 68 bacterial strains and 7 distinct plasmid types. We showed how an initial multi-species outbreak of conserved IncC plasmids (95 genomes across 37 strains) allowed endemicity to be established through the ability of blaIMP-4 to disseminate in successful strain-genetic setting pairs we termed propagators, in particular Serratia marcescens and Enterobacter hormaechei. From this reservoir, blaIMP-4 persisted through diversification of genetic settings that resulted from transfer of blaIMP-4 plasmids between bacterial hosts and of the integron carrying blaIMP-4 between plasmids. Our findings provide a framework for understanding endemicity and spread of MBLs and may have broader applicability to other carbapenemase-producing organisms.


Assuntos
Integrons , beta-Lactamases , Integrons/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Plasmídeos/genética , Serratia marcescens/genética , Serratia marcescens/metabolismo , Carbapenêmicos/farmacologia , Genômica , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
4.
J Med Microbiol ; 72(6)2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289488

RESUMO

Introduction. One third of people with CF in the UK are co-infected by both Staphylococcus aureus and Pseudomonas aeruginosa. Chronic bacterial infection in CF contributes to the gradual destruction of lung tissue, and eventually respiratory failure in this group.Gap Statement. The contribution of S. aureus to cystic fibrosis (CF) lung decline in the presence or absence of P. aeruginosa is unclear. Defining the molecular and phenotypic characteristics of a range of S. aureus clinical isolates will help further understand its pathogenic capabilities.Aim. Our objective was to use molecular and phenotypic tools to characterise twenty-five clinical S. aureus isolates collected from mono- and coinfection with P. aeruginosa from people with CF at the Royal Victoria Infirmary, Newcastle upon Tyne.Methodology. Genomic DNA was extracted and sequenced. Multilocus sequence typing was used to construct phylogeny from the seven housekeeping genes. A pangenome was calculated using Roary, and cluster of Orthologous groups were assigned using eggNOG-mapper which were used to determine differences within core, accessory, and unique genomes. Characterisation of sequence type, clonal complex, agr and spa types was carried out using PubMLST, eBURST, AgrVATE and spaTyper, respectively. Antibiotic resistance was determined using Kirby-Bauer disc diffusion tests. Phenotypic testing of haemolysis was carried out using ovine red blood cell agar plates and mucoid phenotypes visualised using Congo red agar.Results. Clinical strains clustered closely based on agr type, sequence type and clonal complex. COG analysis revealed statistically significant enrichment of COG families between core, accessory and unique pangenome groups. The unique genome was significantly enriched for replication, recombination and repair, and defence mechanisms. The presence of known virulence genes and toxins were high within this group, and unique genes were identified in 11 strains. Strains which were isolated from the same patient all surpassed average nucleotide identity thresholds, however, differed in phenotypic traits. Antimicrobial resistance to macrolides was significantly higher in the coinfection group.Conclusion. There is huge variation in genetic and phenotypic capabilities of S. aureus strains. Further studies on how these may differ in relation to other species in the CF lung may give insight into inter-species interactions.


Assuntos
Coinfecção , Fibrose Cística , Infecções Estafilocócicas , Animais , Ovinos , Staphylococcus aureus , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Coinfecção/microbiologia , Ágar , Fenótipo , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia
5.
J Antimicrob Chemother ; 78(2): 397-410, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473954

RESUMO

OBJECTIVES: Pharmacodynamic profiling of oral ciprofloxacin dosing for urinary tract infections caused by ceftriaxone-resistant Escherichia coli isolates with ciprofloxacin MIC ≥ 0.25 mg/L. BACKGROUND: Urine-specific breakpoints for ciprofloxacin do not exist. However, high urinary concentrations may promote efficacy in isolates with low-level resistance. METHODS: Ceftriaxone-resistant E. coli urinary isolates were screened for ciprofloxacin susceptibility. Fifteen representative strains were selected and tested using a dynamic bladder infection model. Oral ciprofloxacin dosing was simulated over 3 days (250 mg daily, 500 mg daily, 250 mg 12 hourly, 500 mg 12 hourly and 750 mg 12 hourly). The model was run for 96 h. Primary endpoint was change in bacterial density at 72 h. Secondary endpoints were follow-up change in bacterial density at 96 h and area-under-bacterial-kill-curve. Bacterial response was related to exposure (AUC0-24/MIC; Cmax/MIC). PTA was determined using Monte-Carlo simulation. RESULTS: Ninety-three clinical isolates demonstrated a trimodal ciprofloxacin MIC distribution (modal MICs at 0.016, 0.25 and 32 mg/L). Fifteen selected clinical isolates (ciprofloxacin MIC 0.25-512 mg/L) had a broad range of quinolone-resistance genes. Following ciprofloxacin exposure, E. coli ATCC 25922 (MIC 0.008 mg/L) was killed in all dosing experiments. Six isolates (MIC ≥ 16 mg/L) regrew in all experiments. Remaining isolates (MIC 0.25-8 mg/L) regrew variably after an initial period of killing, depending on simulated ciprofloxacin dose. A >95% PTA, using AUC0-24/MIC targets, supported 250 mg 12 hourly for susceptible isolates (MIC ≤ 0.25 mg/L). For isolates with MIC ≤ 1 mg/L, 750 mg 12 hourly promoted 3 log10 kill at the end of treatment (72 h), 1 log10 kill at follow-up (96 h) and 90% maximal activity (AUBKC0-96). CONCLUSIONS: Bladder infection modelling supports oral ciprofloxacin activity against E. coli with low-level resistance (ciprofloxacin MIC ≤ 1 mg/L) when using high dose therapy (750 mg 12 hourly).


Assuntos
Cistite , Infecções Urinárias , Humanos , Ciprofloxacina/farmacologia , Ceftriaxona/uso terapêutico , Escherichia coli , Bexiga Urinária/microbiologia , Infecções Urinárias/microbiologia , Bactérias , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
6.
mSphere ; 7(5): e0036122, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36135360

RESUMO

Clostridioides difficile infection (CDI) has a higher incidence in solid organ transplant recipients than other hospitalized patients and can lead to poor outcomes. Perturbations to the intestinal microbiome are common in patients undergoing liver transplant (LT); however, the impacts of microbial diversity and composition on risk of CDI in this patient population is incompletely understood. Here, we assessed patients in an established, longitudinal LT cohort for development of CDI within 1 year of transplant. Clinical data were compared for patients with and without CDI using univariable models. 16S rRNA sequencing of fecal samples was performed at multiple pre- and posttransplant time points to compare microbiome α- and ß-diversity and enrichment of specific taxa in patients with and without CDI. Of 197 patients who underwent LT, 18 (9.1%) developed CDI within 1 year. Pre-LT Child-Pugh class C liver disease, postoperative biliary leak, and use of broad-spectrum antibiotics were significantly associated with CDI. Patients who developed CDI had significantly lower α-diversity than patients without CDI overall and in samples collected at months 1, 3, and 6. Microbial composition (ß-diversity) differed between patients with and without CDI and across sampling time points, particularly later in their posttransplant course. We also identified 15 (8%) patients with toxigenic C. difficile colonization who did not develop CDI and may have had additional protective factors. In summary, clinical and microbiome factors are likely to converge to impart CDI risk. Along with enhanced preventive measures, there may be a role for microbiome modulation to restore microbial diversity in high-risk LT patients. IMPORTANCE Liver transplant (LT) recipients have high rates of Clostridioides difficile infection (CDI), which has been associated with poor outcomes, including graft-related complications and mortality, in prior studies. Susceptibility to CDI is known to increase following perturbations in intestinal commensal bacteria that enable germination of C. difficile spores and bacterial overgrowth. In LT patients, changes in the intestinal microbiome resulting from advanced liver disease, surgery, and other clinical factors is common and most pronounced during the early posttransplant period. However, the relationship between microbiome changes and CDI risk after LT remains unclear. In this study, we investigated clinical and microbiome factors associated with development of CDI within the first year after LT. The importance of this work is to identify patients with high-risk features that should receive enhanced preventive measures and may benefit from the study of novel strategies to reconstitute the intestinal microbiome after LT.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Transplante de Fígado , Humanos , Clostridioides difficile/genética , RNA Ribossômico 16S/genética , Disbiose/complicações , Transplante de Fígado/efeitos adversos , Infecções por Clostridium/microbiologia , Antibacterianos/uso terapêutico
7.
J Glob Antimicrob Resist ; 30: 286-293, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35738385

RESUMO

OBJECTIVES: There are scant primary clinical data on antimicrobial resistance (AMR) burden from low- and middle-income countries (LMICs). We adapted recent World Health Organization methodology to measure the effect of third-generation cephalosporin resistance (3GC-R) on mortality and excess length of hospital stay in Fiji. METHODS: We conducted a prospective cohort study of inpatients with Enterobacterales bloodstream infections (BSIs) at Colonial War Memorial Hospital, Suva. We used cause-specific Cox proportional hazards models to estimate the effect of 3GC-R on the daily risk (hazard) of in-hospital mortality and being discharged alive (competing risks), and we used multistate modelling to estimate the excess length of hospital stay. RESULTS: From July 2020 to February 2021 we identified 162 consecutive Enterobacterales BSIs; 3GC-R was present in 66 (40.7%). Crude mortality for patients with 3GC-susceptible and 3GC-R BSIs was 16.7% (16/96) and 30.3% (20/66), respectively. 3GC-R was not associated with the in-hospital mortality hazard rate (adjusted hazard ratio [aHR] 1.13, 95% confidence interval [CI] 0.51-2.53) or being discharged alive (aHR 0.99, 95% CI 0.65-1.50), whereas Charlson comorbidity index score (aHR 1.62, 95% CI 1.36-1.93) and Pitt bacteraemia score (aHR 3.57, 95% CI 1.31-9.71) were both associated with an increased hazard rate of in-hospital mortality. 3GC-R was associated with an increased length of stay of 2.6 days (95% CI 2.5-2.8). 3GC-R was more common among hospital-associated infections, but genomics did not identify clonal transmission. CONCLUSION: Patients with Enterobacterales BSIs in Fiji had high mortality. There were high rates of 3GC-R, which was associated with increased hospital length of stay but not with in-hospital mortality.


Assuntos
Bacteriemia , Infecção Hospitalar , Bacteriemia/tratamento farmacológico , Cefalosporinas , Infecção Hospitalar/tratamento farmacológico , Fiji/epidemiologia , Humanos , Tempo de Internação , Estudos Prospectivos
8.
Lancet Reg Health West Pac ; 25: 100487, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35677391

RESUMO

Background: COVID-19 has affected many healthcare workers (HCWs) globally. We performed state-wide SARS-CoV-2 genomic epidemiological investigations to identify HCW transmission dynamics and provide recommendations to optimise healthcare system preparedness for future outbreaks. Methods: Genome sequencing was attempted on all COVID-19 cases in Victoria, Australia. We combined genomic and epidemiologic data to investigate the source of HCW infections across multiple healthcare facilities (HCFs) in the state. Phylogenetic analysis and fine-scale hierarchical clustering were performed for the entire dataset including community and healthcare cases. Facilities provided standardised epidemiological data and putative transmission links. Findings: Between March-October 2020, approximately 1,240 HCW COVID-19 infection cases were identified; 765 are included here, requested for hospital investigations. Genomic sequencing was successful for 612 (80%) cases. Thirty-six investigations were undertaken across 12 HCFs. Genomic analysis revealed that multiple introductions of COVID-19 into facilities (31/36) were more common than single introductions (5/36). Major contributors to HCW acquisitions included mobility of staff and patients between wards and facilities, and characteristics and behaviours of patients that generated numerous secondary infections. Key limitations at the HCF level were identified. Interpretation: Genomic epidemiological analyses enhanced understanding of HCW infections, revealing unsuspected clusters and transmission networks. Combined analysis of all HCWs and patients in a HCF should be conducted, supported by high rates of sequencing coverage for all cases in the population. Established systems for integrated genomic epidemiological investigations in healthcare settings will improve HCW safety in future pandemics. Funding: The Victorian Government, the National Health and Medical Research Council Australia, and the Medical Research Future Fund.

10.
BMC Infect Dis ; 21(1): 683, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261450

RESUMO

BACKGROUND: Third-generation cephalosporin-resistant Gram-negatives (3GCR-GN) and vancomycin-resistant enterococci (VRE) are common causes of multi-drug resistant healthcare-associated infections, for which gut colonisation is considered a prerequisite. However, there remains a key knowledge gap about colonisation and infection dynamics in high-risk settings such as the intensive care unit (ICU), thus hampering infection prevention efforts. METHODS: We performed a three-month prospective genomic survey of infecting and gut-colonising 3GCR-GN and VRE among patients admitted to an Australian ICU. Bacteria were isolated from rectal swabs (n = 287 and n = 103 patients ≤2 and > 2 days from admission, respectively) and diagnostic clinical specimens between Dec 2013 and March 2014. Isolates were subjected to Illumina whole-genome sequencing (n = 127 3GCR-GN, n = 41 VRE). Multi-locus sequence types (STs) and antimicrobial resistance determinants were identified from de novo assemblies. Twenty-three isolates were selected for sequencing on the Oxford Nanopore MinION device to generate completed reference genomes (one for each ST isolated from ≥2 patients). Single nucleotide variants (SNVs) were identified by read mapping and variant calling against these references. RESULTS: Among 287 patients screened on admission, 17.4 and 8.4% were colonised by 3GCR-GN and VRE, respectively. Escherichia coli was the most common species (n = 36 episodes, 58.1%) and the most common cause of 3GCR-GN infection. Only two VRE infections were identified. The rate of infection among patients colonised with E. coli was low, but higher than those who were not colonised on admission (n = 2/33, 6% vs n = 4/254, 2%, respectively, p = 0.3). While few patients were colonised with 3GCR- Klebsiella pneumoniae or Pseudomonas aeruginosa on admission (n = 4), all such patients developed infections with the colonising strain. Genomic analyses revealed 10 putative nosocomial transmission clusters (≤20 SNVs for 3GCR-GN, ≤3 SNVs for VRE): four VRE, six 3GCR-GN, with epidemiologically linked clusters accounting for 21 and 6% of episodes, respectively (OR 4.3, p = 0.02). CONCLUSIONS: 3GCR-E. coli and VRE were the most common gut colonisers. E. coli was the most common cause of 3GCR-GN infection, but other 3GCR-GN species showed greater risk for infection in colonised patients. Larger studies are warranted to elucidate the relative risks of different colonisers and guide the use of screening in ICU infection control.


Assuntos
Infecção Hospitalar , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Trato Gastrointestinal/microbiologia , Controle de Infecções , Unidades de Terapia Intensiva , Enterococos Resistentes à Vancomicina , Antibacterianos/farmacologia , Austrália/epidemiologia , Resistência às Cefalosporinas/genética , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Humanos , Controle de Infecções/métodos , Controle de Infecções/normas , Unidades de Terapia Intensiva/normas , Unidades de Terapia Intensiva/estatística & dados numéricos , Estudos Prospectivos , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação
11.
Clin Microbiol Infect ; 27(12): 1856.e7-1856.e13, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33915285

RESUMO

OBJECTIVES: mcr-9.1 is a newly described mobile colistin resistance gene. We have noted its presence in multiple species of carbapenem-resistant Enterobacterales (CRE) from our institution. We aimed to determine the clinical features, genomic context and phenotypic impact of mcr-9.1 carriage in a series of patients between 2010 and 2019. METHODS: We identified 32 patients with mcr-9.1-carrying CRE isolates (mCRE) and collected demographic, antimicrobial exposure and infection data. Whole-genome sequencing (including short and long reads) was performed on 32 isolates. We assessed sequence similarity of mcr-9.1-harbouring plasmids, then compared our findings with plasmids for which sequence data were publicly available. RESULTS: There was no colistin exposure in patients prior to isolation of mCRE. mcr-9.1 was identified on IncHI2 plasmids across four different bacterial species and was co-located with blaIMP-4 in 23/30 plasmids studied. mCRE isolates did not demonstrate phenotypic colistin resistance, either at baseline or following sublethal colistin exposure, thus showing that mcr-9.1 alone is not sufficient for resistance. Publicly available sequence data indicated the presence of carbapenemase genes in 236/619 mcr-9.1-carrying genomes (38%). IncHI2 plasmids carrying mcr-9.1 and carbapenemase genes were detected in genomes from North America, Europe, North Africa, Asia and Oceania. CONCLUSIONS: Spread of mcr-9.1 in CRE from our institution was driven by IncHI2 'superplasmids', so termed because of their large size and their prolific carriage of resistance determinants. These were also detected in global CRE genomes. Phenotypic colistin resistance was not detected in our isolates but remains to be determined from global mCRE.


Assuntos
Carbapenêmicos , Colistina , Farmacorresistência Bacteriana/genética , Enterobacteriaceae , Plasmídeos , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Colistina/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Genes Bacterianos , Testes de Sensibilidade Microbiana , Plasmídeos/genética
13.
Transpl Infect Dis ; 23(3): e13542, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33278052

RESUMO

Few treatment options are available for oseltamivir-resistant influenza. It has been proposed that baloxavir can be effective in this setting due to its distinct mechanism of action but clinical experience is lacking for immunocompromised patients. We report two such cases treated with baloxavir after failure of oseltamivir and detection of oseltamivir resistance mutations. Baloxavir/zanamivir combination therapy was effective in one patient, but persistent viral shedding was noted with baloxavir monotherapy in the other patient.


Assuntos
Dibenzotiepinas/uso terapêutico , Influenza Humana , Morfolinas/uso terapêutico , Piridonas/uso terapêutico , Triazinas/uso terapêutico , Antivirais/uso terapêutico , Farmacorresistência Viral/efeitos dos fármacos , Humanos , Hospedeiro Imunocomprometido , Influenza Humana/tratamento farmacológico , Alphainfluenzavirus , Neuraminidase/uso terapêutico , Oseltamivir/uso terapêutico , Zanamivir/uso terapêutico
14.
Clin Infect Dis ; 73(5): e1045-e1053, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-33197926

RESUMO

BACKGROUND: Staphylococcus aureus skin and soft tissue infections (SA-SSTIs) are common in healthcare and community settings, and recurrences occur at variable frequency, even after successful initial treatment. Knowing the exact burden and timing of recurrent disease is critical to planning and evaluating interventions to prevent recurrent SSTIs. METHODS: In this retrospective study, SSTI cases in patients aged ≥18 years at 3 US medical centers (Columbia, Chicago, Vanderbilt) between 2006 and 2016 were analyzed according to a biennial cohort design. Index SSTIs (with or without key comorbidities), either microbiologically confirmed to be SA-SSTI or not microbiologically tested (NMT-SSTI), were recorded within 1 calendar year and followed up for 12 months for recurrent infections. The number of index cases, proportion of index cases with ≥1 recurrence(s), time to first recurrence, and number of recurrences were collected for both SA-SSTI and NMT-SSTI events. RESULTS: In the most recent cohorts, 4755 SSTI cases were reported at Columbia, 2873 at Chicago, and 6433 at Vanderbilt. Of these, 452, 153, and 354 cases were confirmed to be due to S. aureus. Most cases were reported in patients without key comorbidities. Across centers, 16.4%-19.0% (SA-SSTI) and 11.0%-19.2% (NMT-SSTI) of index cases had ≥1 recurrence(s). In patients without key comorbidities, more than 60% of index SSTIs with recurrences had only 1 recurrence, half of which occurred in the first 3 months following primary infection. CONCLUSIONS: SA-SSTI recurrences are common among healthy adults and occur in at least 1 in 6 individuals during the 1 year following the primary event.


Assuntos
Infecções Comunitárias Adquiridas , Staphylococcus aureus Resistente à Meticilina , Infecções dos Tecidos Moles , Infecções Cutâneas Estafilocócicas , Adolescente , Adulto , Antibacterianos/uso terapêutico , Infecções Comunitárias Adquiridas/tratamento farmacológico , Humanos , Pacientes Ambulatoriais , Recidiva , Estudos Retrospectivos , Infecções dos Tecidos Moles/tratamento farmacológico , Infecções dos Tecidos Moles/epidemiologia , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Infecções Cutâneas Estafilocócicas/epidemiologia , Staphylococcus aureus
15.
Cell Rep ; 33(4): 108313, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33113377

RESUMO

Polymyxin resistance (PR) threatens the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. PR frequently arises through chemical modification of the lipid A portion of lipopolysaccharide. Various mutations are implicated in PR, including in three two-component systems-CrrA/B, PmrA/B, and PhoP/Q-and the negative regulator MgrB. Few have been functionally validated. Therefore, here we adapt a CRISPR-Cas9 system to CRKP to elucidate how mutations in clinical CRKP isolates induce PR. We demonstrate that CrrB is a positive regulator of PR, and common clinical mutations lead to the addition of both 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosophethanolamine (pEtN) to lipid A, inducing notably higher polymyxin minimum inhibitory concentrations than mgrB disruption. Additionally, crrB mutations cause a significant virulence increase at a fitness cost, partially from activation of the pentose phosphate pathway. Our data demonstrate the importance of CrrB in high-level PR and establish important differences across crrB alleles in balancing resistance with fitness and virulence.


Assuntos
Klebsiella pneumoniae/genética , Polimixinas/metabolismo , Humanos
16.
mSystems ; 5(3)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457240

RESUMO

Polymyxins are used as treatments of last resort for Gram-negative bacterial infections. Their increased use has led to concerns about emerging polymyxin resistance (PR). Phenotypic polymyxin susceptibility testing is resource intensive and difficult to perform accurately. The complex polygenic nature of PR and our incomplete understanding of its genetic basis make it difficult to predict PR using detection of resistance determinants. We therefore applied machine learning (ML) to whole-genome sequencing data from >600 Klebsiella pneumoniae clonal group 258 (CG258) genomes to predict phenotypic PR. Using a reference-based representation of genomic data with ML outperformed a rule-based approach that detected variants in known PR genes (area under receiver-operator curve [AUROC], 0.894 versus 0.791, P = 0.006). We noted modest increases in performance by using a bacterial genome-wide association study to filter relevant genomic features and by integrating clinical data in the form of prior polymyxin exposure. Conversely, reference-free representation of genomic data as k-mers was associated with decreased performance (AUROC, 0.692 versus 0.894, P = 0.015). When ML models were interpreted to extract genomic features, six of seven known PR genes were correctly identified by models without prior programming and several genes involved in stress responses and maintenance of the cell membrane were identified as potential novel determinants of PR. These findings are a proof of concept that whole-genome sequencing data can accurately predict PR in K. pneumoniae CG258 and may be applicable to other forms of complex antimicrobial resistance.IMPORTANCE Polymyxins are last-resort antibiotics used to treat highly resistant Gram-negative bacteria. There are increasing reports of polymyxin resistance emerging, raising concerns of a postantibiotic era. Polymyxin resistance is therefore a significant public health threat, but current phenotypic methods for detection are difficult and time-consuming to perform. There have been increasing efforts to use whole-genome sequencing for detection of antibiotic resistance, but this has been difficult to apply to polymyxin resistance because of its complex polygenic nature. The significance of our research is that we successfully applied machine learning methods to predict polymyxin resistance in Klebsiella pneumoniae clonal group 258, a common health care-associated and multidrug-resistant pathogen. Our findings highlight that machine learning can be successfully applied even in complex forms of antibiotic resistance and represent a significant contribution to the literature that could be used to predict resistance in other bacteria and to other antibiotics.

17.
Clin Infect Dis ; 70(8): 1666-1674, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185081

RESUMO

BACKGROUND: Understanding the changing epidemiology of Staphylococcus aureus bacteremia, as well as the variables associated with poor outcomes, can yield insight into potential interventions. METHODS: This study was a retrospective, observational cohort study of adult patients at an academic medical center in New York City who had S. aureus bloodstream infections between 1 January 2007 and 31 December 2015. Participants were divided into 3 periods: group 1 (2007-2009), group 2 (2010-2012), and group 3 (2013-2015) for trend analysis. All clinical strains were genotyped (spa.). The main outcome was 30-day all-cause mortality. RESULTS: There were 1264 episodes of methicillin-susceptible S. aureus (MSSA) and 875 episodes of methicillin-resistant S. aureus (MRSA) bacteremia, with a rising proportion due to MSSA (55% group 1; 59% group 2; 63% group 3; P = .03.) There were no significant changes in average age, gender, Charlson score, and distribution of strain genotypes. Mortality in MRSA infection was unchanged (25% group 1; 25% group 2; 26% group 3), while mortality in MSSA infection significantly declined (18% group 1; 18% group 2; 13% group 3). The average time to antistaphylococcal therapy (AST) in MSSA infection declined during the study (3.7 days group 1; 3.5 group 2; 2.2 group 3). In multivariate analysis, AST within 7 days of initial positive MSSA culture was associated with survival. CONCLUSIONS: Mortality in MSSA bloodstream infection is declining, associated with a decrease in time to targeted therapy. These results emphasize the potential for rapid diagnostics and early optimization of treatment to impact outcomes in MSSA bacteremia.


Assuntos
Bacteriemia , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Adulto , Bacteriemia/epidemiologia , Estudos de Coortes , Humanos , Staphylococcus aureus Resistente à Meticilina/genética , Cidade de Nova Iorque , Estudos Retrospectivos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/epidemiologia , Staphylococcus aureus/genética
18.
Clin Infect Dis ; 70(10): 2084-2091, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31513705

RESUMO

BACKGROUND: Polymyxins are antimicrobials of last resort for the treatment of carbapenem-resistant Enterobacteriaceae, but resistance in 5% to >40% isolates has been reported. We conducted a genomic survey of clinical polymyxin-resistant (PR) Klebsiella pneumoniae to determine the molecular mechanisms of PR and the role of polymyxin exposure versus transmission in PR emergence. METHODS: We included 88 patients with PR K. pneumoniae from 2011-2018 and collected demographic, antimicrobial exposure, and infection data. Whole-genome sequencing was performed on 388 isolates, including 164 PR isolates. Variant calling and insertion sequence detection were performed, focusing on key genes associated with PR (mgrB, crrAB, phoPQ, and pmrAB). We conducted phylogenetic analyses of key K. pneumoniae multi-locus sequence types (ST258, ST17, ST307, and ST392). RESULTS: Polymyxin exposure was documented in 53/88 (60%) patients prior to PR detection. Through an analysis of key PR genes, we detected 129 individual variants and 72 unique variant combinations in PR isolates. This included multiple, distinct changes in 36% of patients with serial PR isolates. Insertion sequence disruption was limited to mgrB (P < .001). Polymyxin minimum inhibitory concentrations showed stepwise increases with the number of PR genes affected (P < .001). When clusters containing PR isolates in ≥2 patients were analyzed, 10/14 had multiple genetic events leading to PR. CONCLUSIONS: Molecular mechanisms leading to PR in clinical K. pneumoniae isolates are remarkably heterogenous, even within clusters or individual patients. Polymyxin exposure with de novo PR emergence led to PR in the majority of patients, rather than transmission. Optimizing polymyxin use should be a key strategy in stopping the spread of PR.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Colistina , Farmacorresistência Bacteriana/genética , Genômica , Humanos , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Filogenia , Polimixinas/farmacologia , Estudos Retrospectivos
19.
J Clin Microbiol ; 58(2)2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31748324

RESUMO

Despite the increasing reliance on polymyxin antibiotics (polymyxin B and colistin) for treatment of multidrug-resistant Gram-negative infections, many clinical laboratories are unable to perform susceptibility testing due to the lack of accurate and reliable methods. Although gradient agar diffusion is commonly performed for other antimicrobials, its use for polymyxins is discouraged due to poor performance characteristics. Performing gradient agar diffusion with calcium enhancement of susceptibility testing media has been shown to improve the identification of polymyxin-resistant isolates with plasmid-mediated resistance (mcr-1). We therefore sought to evaluate the broad clinical applicability of this approach for colistin susceptibility testing by assessing a large and diverse collection of resistant and susceptible patient isolates collected from multiple U.S. medical centers. Among 217 isolates, the overall categorical and essential agreement for calcium-enhanced gradient agar diffusion were 73.7% and 65.5%, respectively, compared to the results for reference broth microdilution. Performance varied significantly by organism group, with agreement being highest for Enterobacterales and lowest for Pseudomonas aeruginosa Nevertheless, even for Enterobacterales, there was a high rate of very major errors (9.2%). Performance was similarly poor for calcium-enhanced broth microdilution. While calcium enhancement did allow for more accurate categorization of mcr-1-resistant isolates, there were unacceptably high rates of errors for both susceptible and non-mcr-1-resistant isolates, raising serious doubts about the suitability of these calcium-enhanced methods for routine colistin susceptibility testing in clinical laboratories.


Assuntos
Antibacterianos/farmacologia , Cálcio/farmacologia , Colistina/farmacologia , Meios de Cultura/química , Bactérias Gram-Negativas/efeitos dos fármacos , Ágar , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/microbiologia , Humanos , Pseudomonas aeruginosa/efeitos dos fármacos
20.
Nat Commun ; 10(1): 4715, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624266

RESUMO

Infections by multidrug-resistant bacteria (MDRB) remain a leading cause of morbidity and mortality after liver transplantation (LT). Gut dysbiosis characteristic of end-stage liver disease may predispose patients to intestinal MDRB colonization and infection, in turn exacerbating dysbiosis. However, relationships between MDRB colonization and dysbiosis after LT remain unclear. We prospectively recruited 177 adult patients undergoing LT at a single tertiary care center. 16 S V3-V4 rRNA sequencing was performed on 723 fecal samples collected pre-LT and periodically until one-year post-LT to test whether MDRB colonization was associated with decreased microbiome diversity. In multivariate linear mixed-effect models, MDRB colonization predicts reduced Shannon α-diversity, after controlling for underlying liver disease, antibiotic exposures, and clinical complications. Importantly, pre-LT microbial markers predict subsequent colonization by MDRB. Our results suggest MDRB colonization as a major, previously unrecognized, marker of persistent dysbiosis. Therapeutic approaches accounting for microbial and clinical factors are needed to address post-transplant microbiome health.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Doença Hepática Terminal/terapia , Microbioma Gastrointestinal/efeitos dos fármacos , Transplante de Fígado/métodos , Adulto , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Disbiose/genética , Disbiose/microbiologia , Disbiose/prevenção & controle , Doença Hepática Terminal/microbiologia , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA