Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Evol Biol ; 36(11): 1595-1608, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37885128

RESUMO

Hybridization could be considered part of the evolutionary history of many species. The hybridization among sea turtle species on the Brazilian coast is atypical and occurs where nesting areas and reproductive seasons overlap. Integrated analysis of morphology and genetics is still scarce, and there is no evidence of the parental chromosome set distribution in sea turtle interspecific hybrids. In this study, chromosome markers previously established for pure sea turtle species were combined with morphological and molecular analyses aiming to recognize genetic composition and chromosome sets in possible interspecific hybrids initially identified by mixed morphology. The data showed that one hybrid could be an F2 individual among Caretta caretta × Eretmochelys imbricata × Chelonia mydas, and another is resulting from backcross between C. caretta × Lepidochelys olivacea. Native alleles of different parental lineages were reported in the hybrids, and, despite this, it was verified that the hybrid chromosome sets were still balanced. Thus, how sea turtle hybridism can affect genetic features in the long term is a concern, as the implications of the crossing-over in hybrid chromosomal sets and the effects on genetic function are still unpredictable.


Assuntos
Tartarugas , Animais , Tartarugas/genética , Evolução Biológica , Reprodução , Cromossomos , Análise Citogenética
2.
Genet Mol Biol ; 43(4): e20200213, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33270075

RESUMO

The wide variation in size and content of eukaryotic genomes is mainly attributed to the accumulation of repetitive DNA sequences, like microsatellites, which are tandemly repeated DNA sequences. Sea turtles share a diploid number (2n) of 56, however recent molecular cytogenetic data have shown that karyotype conservatism is not a rule in the group. In this study, the heterochromatin distribution and the chromosomal location of microsatellites (CA)n, (GA)n, (CAG)n, (GATA)n, (GAA)n, (CGC)n and (GACA)n in Chelonia mydas, Caretta caretta, Eretmochelys imbricata and Lepidochelys olivacea were comparatively investigated. The obtained data showed that just the (CA)n, (GA)n, (CAG)n and (GATA)n microsatellites were located on sea turtle chromosomes, preferentially in heterochromatic regions of the microchromosomes (mc). Variations in the location of heterochromatin and microsatellites sites, especially in some pericentromeric regions of macrochromosomes, corroborate to proposal of centromere repositioning occurrence in Cheloniidae species. Furthermore, the results obtained with the location of microsatellites corroborate with the temperature sex determination mechanism proposal and the absence of heteromorphic sex chromosomes in sea turtles. The findings are useful for understanding part of the karyotypic diversification observed in sea turtles, especially those that explain the diversification of Carettini from Chelonini species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA