Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Genet Mol Biol ; 40(1 suppl 1): 373-386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28399194

RESUMO

Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

2.
Genet. mol. biol ; Genet. mol. biol;40(1,supl.1): 373-386, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-892382

RESUMO

Abstract Heavy metals are natural non-biodegradable constituents of the Earth's crust that accumulate and persist indefinitely in the ecosystem as a result of human activities. Since the industrial revolution, the concentration of cadmium, arsenic, lead, mercury and zinc, amongst others, have increasingly contaminated soil and water resources, leading to significant yield losses in plants. These issues have become an important concern of scientific interest. Understanding the molecular and physiological responses of plants to heavy metal stress is critical in order to maximize their productivity. Recent research has extended our view of how plant hormones can regulate and integrate growth responses to various environmental cues in order to sustain life. In the present review we discuss current knowledge about the role of the plant growth hormones abscisic acid, auxin, brassinosteroid and ethylene in signaling pathways, defense mechanisms and alleviation of heavy metal toxicity.

3.
Plant Cell Rep ; 34(7): 1139-49, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25721200

RESUMO

KEY MESSAGE: MicroRNAs have higher expression stability than protein-coding genes in B. napus seeds and are therefore good reference genes for miRNA and mRNA RT-qPCR analysis. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) has become the "gold standard" to gain insight into function of genes. However, the accuracy of the technique depends on appropriate reference genes for quantification analysis in different experimental conditions. Accumulation of microRNAs (miRNAs) has also been studied by RT-qPCR, but there are no reference genes currently validated for normalization of Brassica napus miRNA expression data. In this study, we selected 43 B. napus miRNAs and 18 previously validated mRNA reference genes. The expression stability of the candidate reference genes was evaluated in different tissue samples (stages of seed development, flowers, and leaves) using geNorm, NormFinder, and RefFinder analysis. The best-ranked reference genes for expression studies during seed development (miR167-1_2, miR11-1, miR159-1 and miR168-1) were used to asses the expression of miR03-1. Since candidate miRNAs showed higher expression stability than protein-coding genes in most of the tested conditions, the expression profile of DGAT1 gene was compared when normalized by the four most stable miRNAs reference genes and by the four most stable mRNA reference genes. The expected expression pattern of DGAT1 during seed development was achieved with the use of miRNA as reference genes. In conclusion, the most stable miRNA reference genes can be employed in the normalization of RT-qPCR quantification of miRNAs and protein-coding genes. This work is the first to perform a comprehensive survey of the stability of miRNA reference genes in B. napus and provides guidelines to obtain more accurate RT-qPCR results in B. napus seeds studies.


Assuntos
Brassica napus/embriologia , Brassica napus/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Sementes/embriologia , Sementes/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Reprodutibilidade dos Testes , Software
4.
PLoS One ; 7(11): e50663, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226347

RESUMO

MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. Members of 59 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally 29 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. Assembled mRNA-seq contigs allowed for a search of putative new precursors and led to the identification of 13 novel miRNA families. Analysis of miRNA population between libraries reveals that several miRNAs and isomiRNAs have different abundance in developing stages compared to mature seeds. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comparative study of the miRNA transcriptome of mature and developing B. napus seeds and provides a basis for future research on individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus.


Assuntos
Brassica napus/genética , Sequência Conservada , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Análise de Sequência de RNA , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Metabolismo Energético/genética , MicroRNAs/metabolismo , Poliadenilação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Sementes/metabolismo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA