Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(10): 4143-4152, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36862848

RESUMO

To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 µg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 µg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.


Assuntos
Neve , Águas Residuárias , Poluentes Químicos da Água , Animais , Crustáceos , Monitoramento Ambiental , Peixes , Congelamento , Medição de Risco , Neve/química , Eliminação de Resíduos Líquidos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água , Fenilenodiaminas/análise , Fenilenodiaminas/toxicidade , Benzoquinonas/análise , Benzoquinonas/toxicidade
2.
Sci Total Environ ; 853: 158611, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36087665

RESUMO

Mountains are an essential component of the global life-support system. They are characterized by a rugged, heterogenous landscape with rapidly changing environmental conditions providing myriad ecological niches over relatively small spatial scales. Although montane species are well adapted to life at extremes, they are highly vulnerable to human derived ecosystem threats. Here we build on the manifesto 'World Scientists' Warning to Humanity', issued by the Alliance of World Scientists, to outline the major threats to mountain ecosystems. We highlight climate change as the greatest threat to mountain ecosystems, which are more impacted than their lowland counterparts. We further discuss the cascade of "knock-on" effects of climate change such as increased UV radiation, altered hydrological cycles, and altered pollution profiles; highlighting the biological and socio-economic consequences. Finally, we present how intensified use of mountains leads to overexploitation and abstraction of water, driving changes in carbon stock, reducing biodiversity, and impacting ecosystem functioning. These perturbations can provide opportunities for invasive species, parasites and pathogens to colonize these fragile habitats, driving further changes and losses of micro- and macro-biodiversity, as well further impacting ecosystem services. Ultimately, imbalances in the normal functioning of mountain ecosystems will lead to changes in vital biological, biochemical, and chemical processes, critically reducing ecosystem health with widespread repercussions for animal and human wellbeing. Developing tools in species/habitat conservation and future restoration is therefore essential if we are to effectively mitigate against the declining health of mountains.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Mudança Climática , Água , Carbono , Conservação dos Recursos Naturais
3.
Sci Total Environ ; 828: 154456, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35283126

RESUMO

Mountain lakes have long been perceived as pristine environments. However, atmospheric deposition of persistent organic pollutants (POPs) have been shown to expose these sensitive ecosystems to chemical pollution. Little is known on how this pollution impacts aquatic ecosystems at high altitudes. We combined passive sampling with liquid and gas chromatography high resolution mass spectrometry (LC- and GC-HRMS) to screen the water of eight lakes in three different regions of the French Pyrenees. In total, we screened for 479 organic chemicals including POPs, polycyclic aromatic hydrocarbons (PAHs), legacy and current-use pesticides, biocides, and musk fragrances. We detected a complex cocktail of 151 individual chemicals and used their toxic unit summation (ΣTU) to assess toxicity for crustaceans and algae. While risks for algae never reached chronic risks, this was always the case for crustaceans. Acute toxic risk thresholds for crustaceans were even exceeded in several of our sites. At sites with acute toxic risk levels (> 0.1 ΣTU) crustaceans were completely absent or showed a low abundance. We conclude that crustaceans were at least partly impacted by the high toxic risks driven by the insecticides diazinon and permethrin. These drugs are widely used to protect livestock from blue tongue disease transmitted by sucking insects, suggesting free roaming livestock as local source. Our results provide important evidence on toxic chemical pollution in relatively remote mountain areas, with important consequences for aquatic mountain ecosystems.


Assuntos
Inseticidas , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Diazinon/toxicidade , Ecossistema , Monitoramento Ambiental/métodos , Inseticidas/análise , Inseticidas/toxicidade , Lagos/análise , Permetrina , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA