Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(18): 21426-21435, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938731

RESUMO

Rechargeable aqueous zinc-iodine batteries (AZIBs) represent excellent zinc-iodine redox chemistry and emerged as a promising aspirant due to their high safety, low cost, ease of fabrication, and high energy density. Nevertheless, the high-dissolution-induced iodide diffusion toward the zinc anode brings the self-discharge, which governs the capacity fading and poor cycling life of the battery. Herein, a multipurpose sponge-like porous matrix of a metal-organic gel to host a substantial amount of an iodine-based catholyte and uniform distribution of iodine with controlled iodide diffusion is introduced. Limiting the iodine diffusion due to increased viscosity provides superior electrochemical performance of this promising cathode for solid-state AZIBs. As a result, AZIBs delivering high performance and long-term stability are fabricated with a capacity of 184.9 mA h g-1 with a superior capacity retention of 95.8% even after 1500 cycles at 1 C rate. The unique concept of self-discharge protection is successfully evaluated. Prototype flexible band-aid-type AZIBs were fabricated, which delivered 166.4 mA h g-1 capacity in the bending state, and applied to real-scale wearable applications.

2.
ACS Appl Mater Interfaces ; 12(20): 22939-22947, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32319745

RESUMO

Here, we report phosphonium-based two solid ionic conductors (SICs), namely, triphenylphosphonium methyl iodide (TPPMeI) and triphenylphosphonium iodide (TPPHI), prepared via simple protocol at room temperature and were used as an electrolyte for solid-state photovoltaic devices (ss-PVDs) with open-circuit voltage (Voc) exceeding 800 mV. Here, for the first time, detailed electrochemical investigations with theoretical aspects of phosphonium electrolytes were conducted, where PVDs prepared from these SICs, TPPMeI, showed the highest power conversion efficiency (PCE) of 4.08% with a Voc of 810 mV. However, this performance was further improved up to the PCE of 6.71% with 824 mV of Voc in the presence of additives like LiI and tert-butyl pyridine. This work leads to find the best alternative of liquid and quaternary ammonium ion-based electrolytes that suffers from problems like lower Voc (<800 mV) and stability, leakage, etc.

3.
ACS Appl Mater Interfaces ; 11(4): 4093-4102, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30605298

RESUMO

The solar response ability and low-cost fabrication of the photoanode are important factors for the effective output of the photoelectrochemical system. Modification of the photoanode by which its ability to absorb irradiation can be manipulated has gained tremendous attention. Here, we demonstrated the MoSe2, WSe2, and MoSe2/WSe2 nanocrystal thin films prepared by the liquid-phase exfoliated and electrophoresis methods. Atomic force microscopy and high-resolution transmission electron microscopy show that the liquid exfoliated nanocrystals have a few layered dimensions with good crystallinity. Scanning electron microscopy demonstrated uniform distribution and randomly oriented nanocrystals, having a homogeneous shape and size. X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectra confirm the equal contribution of MoSe2 and WSe2 nanocrystals in the formation of the MoSe2/WSe2 heterojunction. Because of superior absorption of MoSe2/WSe2 heterojunction in the visible region and type-II heterojunction band alignment, in situ measurement of heterojunction electrode shows almost 1.5 times incident photo-to-current conversion efficiency and photoresponsivity in comparison to individual material electrodes. Our result clearly indicates the influence of heterojunction formation between liquid exfoliated nanocrystals on effective separation of photogenerated exciton and enhances charge carrier transfer, which leads to the improvement in photoelectrochemical performance. Liquid exfoliated nanosheet-based heterojunction is attractive as efficient photoanodes for the photoelectrochemical systems.

4.
Small ; 14(36): e1800842, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30091844

RESUMO

Quasi-solid-state dye-sensitized solar cells (DSSCs) fabricated with lightweight flexible substrates have a great potential in wearable electronic devices for in situ powering. However, the poor lifespan of these DSSCs limits their practical application. Strong mechanical stresses involved in practical applications cause breakage of the electrode/electrolyte interface in the DSSCs greatly affecting their performance and lifetime. Here, a mechanically robust, low-cost, long-lasting, and environment-friendly quasi-solid-state DSSC using a smart thermoreversible water-based polymer gel electrolyte with self-healing characteristics at a low temperature (below 0 °C) is demonstrated. When the performance of the flexible DSSC is hindered by strong mechanical stresses (i.e., from multiple bending/twisting/shrinking actions), a simple cooling treatment can regenerate the electrode/electrolyte interface and recover the performance close to the initial level. A performance recovery as high as 94% is proven possible even after 300 cycles of 90° bending. To the best of our knowledge, this is the first aqueous DSSC device with self-healing behavior, using a smart thermoreversible polymer gel electrolyte, which provides a new perspective in flexible wearable solid-state photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA