Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 808: 152138, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34864027

RESUMO

The food-water-land-ecosystem (FWLE) nexus is fundamental for achieving sustainable development. This study examines the influence of urbanization on the FWLE nexus. Toward this end, land was deemed as an entry point. Therefore, the impact of urbanization on the nexus was explored based on changes in land use. We selected Shenzhen, a city in China, as the study area. First, a land change modeler was employed to analyze historical land-use changes from 2000 to 2010, to build transition potential submodels, and to project future land-use patterns for 2030 under a business-as-usual scenario. Second, based on land-use maps, we assessed habitat quality, water yield, and water supply from 2000 to 2030 using Integrated Valuation of Ecosystem Services and Tradeoffs. Moreover, crop production was estimated according to statistical materials. Finally, the study presents the analyses and discussion of the impacts of urbanization on ecosystem services related to the FWLE nexus. The results of land-use changes indicated that a significant expansion of artificial surfaces occurred in Shenzhen with varying degrees of decrease in cultivated land, forest, and grassland. Furthermore, habitat quality, water supply, and crop production decreased evidently due to rapid urbanization. In contrast, the total water yield indicated an upward trend owing to the increased water yield from increasing artificial surfaces, whereas water yield from other land-use areas declined, such as the forest and grassland. The results demonstrated a significant positive correlation between artificial surfaces and total water yield. However, negative correlations were observed in the interaction among habitat quality, water supply, and crop production. The study presented temporal and spatial assessments to provide an effective and convenient means of exploring the interactions and tradeoffs within the FWLE nexus, which, thus, contributed to the sustainable transformation of urbanization.


Assuntos
Ecossistema , Urbanização , China , Conservação dos Recursos Naturais , Água
2.
J Environ Manage ; 271: 111014, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32778297

RESUMO

The negative sample selection method is a key issue in studies of using machine learning approaches to spatially assess natural hazards. Recently, a Repeatedly Random Undersampling (RRU) was proposed to address the randomness problem faced in Single Random Sampling. However, the RRU cannot guarantee that the generated classifier has the best classification performance during the repeatedly random sampling process. To address this weakness, in this study we proposed an optimized RRU, which follows the idea of RRU, and then changing its rule to find a best classifier. Then, the selected classifier, the actual most accurate classifier (MAC), was employed to compute the probability of hazard occurrence. Support Vector Machine (SVM) was selected as the analysis method, and Genetic Algorithm was employed to compute the parameters of SVM. Forest fire susceptibility was assessed in Huichang County in China due to its forest values and frequent fire events. The results indicated that compared with the RRU, the optimized RRU can find out an actual MAC which has the best classification performance among possible MACs; also, the fire susceptibility map generated by the actual MAC comforts to objective facts. The generated fire susceptibility map can provide useful decision supports for local government to reduce forest fire risks. Moreover, the proposed sampling method, the optimized RRU, presented an enhanced approach for selecting negative samples, which makes the results of forest fire susceptibility assessment more reliable and accurate.


Assuntos
Máquina de Vetores de Suporte , Incêndios Florestais , Algoritmos , China , Aprendizado de Máquina
3.
Ecol Evol ; 9(14): 8025-8041, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31380069

RESUMO

Afforestation projects for mitigating CO2 emissions require to monitor the carbon fixation and plant growth as key indicators. We proposed a monitoring method for predicting carbon fixation in afforestation projects, combining a process-based ecosystem model and field data and addressed the uncertainty of predicted carbon fixation and ecophysiological characteristics with plant growth. Carbon pools were simulated using the Biome-BGC model tuned by parameter optimization using measured carbon density of biomass pools on an 11-year-old Eucommia ulmoides plantation on Loess Plateau, China. The allocation parameters fine root carbon to leaf carbon (FRC:LC) and stem carbon to leaf carbon (SC:LC), along with specific leaf area (SLA) and maximum stomatal conductance (g smax) strongly affected aboveground woody (AC) and leaf carbon (LC) density in sensitivity analysis and were selected as adjusting parameters. We assessed the uncertainty of carbon fixation and plant growth predictions by modeling three growth phases with corresponding parameters: (i) before afforestation using default parameters, (ii) early monitoring using parameters optimized with data from years 1 to 5, and (iii) updated monitoring at year 11 using parameters optimized with 11-year data. The predicted carbon fixation and optimized parameters differed in the three phases. Overall, 30-year average carbon fixation rate in plantation (AC, LC, belowground woody parts and soil pools) was ranged 0.14-0.35 kg-C m-2 y-1 in simulations using parameters of phases (i)-(iii). Updating parameters by periodic field surveys reduced the uncertainty and revealed changes in ecophysiological characteristics with plant growth. This monitoring method should support management of afforestation projects by carbon fixation estimation adapting to observation gap, noncommon species and variable growing conditions such as climate change, land use change.

4.
Sci Total Environ ; 650(Pt 1): 1007-1018, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308790

RESUMO

The usage of products containing Bis (2­ethylhexyl) Phthalate (DEHP) is widespread, mainly through the great variety of PVC products. However, DEHP has become a worldwide concern, due to the potential health and environmental risks it presents. In this study, material flow analysis and emission estimations for DEHP products in Japan, from 1948 to 2030, were performed. Moreover, an evaluation of the potentially damaging impacts on human health and the environment was completed through a lifecycle impact assessment approach. The analysis focused on three representative lifecycle phases - Production, Use and Treatment and Disposal. The peak flows of DEHP from Production to the Use phase were in 1996 with 285,300 tons for shipment and the stocks peaked in 2001 with 1,981,908 tons. Accordingly, in 2006 the peak of DEHP waste to the Treatment and disposal phase was 190,792 tons. The primary emissions were observed in the Use phase, due to the large stocks, with DEHP mostly being released to the pedosphere. The total emissions from the Use phase reached the maximum of 48,960 tons in 2000, whereas in the Production and Treatment and disposal phase it was 248 tons and 15 tons, respectively. Subsequently, concerning the evaluation of impacts, the damage to the human health was the most widespread impact, totaling 13,782 disability-adjusted life years (DALYs), compared with the damage to the ecosystems, with 0.12 species·year. Furthermore, the risk-risk tradeoffs between the lifecycle phases were clarified throughout the years.

5.
Sci Total Environ ; 622-623: 861-868, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29227936

RESUMO

Increasing manufacture and usage of chemicals have not been matched by the increase in our understanding of their risks. Pollutant release and transfer register (PRTR) is becoming a popular measure for collecting chemical data and enhancing the public right to know. However, these data are usually in high dimensionality which restricts their wider use. The present study partitions Japanese PRTR chemicals into five fuzzy clusters by fuzzy c-mean clustering (FCM) to explore the implicit information. Each chemical with membership degrees belongs to each cluster. Cluster I features high releases from non-listed industries and the household sector and high environmental toxicity. Cluster II is characterized by high reported releases and transfers from 24 listed industries above the threshold, mutagenicity, and high environmental toxicity. Chemicals in cluster III have characteristics of high releases from non-listed industries and low toxicity. Cluster IV is characterized by high reported releases and transfers from 24 listed industries above the threshold and extremely high environmental toxicity. Cluster V is characterized by low releases yet mutagenicity and high carcinogenicity. Chemicals with the highest membership degree were identified as representatives for each cluster. For the highest membership degree, half of the chemicals have a value higher than 0.74. If we look at both the highest and the second highest membership degrees simultaneously, about 94% of the chemicals have a value higher than 0.5. FCM can serve as an approach to uncover the implicit information of highly complex chemical dataset, which subsequently supports the strategy development for efficient and effective chemical management.


Assuntos
Poluentes Ambientais/toxicidade , Lógica Fuzzy , Algoritmos , Análise por Conglomerados , Resíduos Industriais , Indústrias , Japão , Risco
6.
Environ Sci Technol ; 51(22): 13224-13230, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29052980

RESUMO

DecaBDE has been widely used as flame retardant in electrical and electronic equipment (EEE). It has recently been listed in Annex A of the Stockholm Convention. The time series flow, stock, and emission of DecaBDE in EEE in Japan were quantified. On this basis, a risk/risk trade-off analysis of substituting DecaBDE with triphenyl phosphate (TPhP) that is one possible phosphorus-based alternative was conducted. The stock of DecaBDE reached a maximum of ∼42 000 t in 1995. Even though the demand flow was negligible in 2030, the stock was modeled to be still ∼470 t. The outflow of DecaBDE, from the use phase to the disposal phase, peaked at ∼4500 t/yr. in 2001. The DecaBDE emission to atmosphere was mainly derived from the production phase before 1990. The use phase became the largest contributor to the total emission from 1995 to 2000. Whereas the disposal phase dominated the total emission from 2000 onward. In the substitution analysis, a trade-off between human and ecological health effect was revealed in case of replacing DecaBDE with TPhP. This study attempted to give an overall picture of DecaBDE application at national level providing insights into relevant environmental policy making.


Assuntos
Eletrônica , Retardadores de Chama , Éteres Difenil Halogenados , Humanos , Japão , Eliminação de Resíduos
7.
Sci Total Environ ; 586: 1308-1315, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237472

RESUMO

Refrigerants provide society with great benefits while have the potential to cause adverse effects on the environment and human health. The present study estimated time-dependent flows and stocks and assessed the effects of refrigerants (R-22, R-410a, and R-32) in household air conditioners in Japan. It was found that stock of R-22 and R-410a peaked at 49,147t in 2000 and 55,994t in 2017, respectively. The largest flow of R-22 and R-410a to waste phase occurred at 3417t/yr. in 2005 and 4011t/yr. in 2023, respectively. The total global warming potential (GWP) due to refrigerant emissions increased from 3.6kt CO2 eq. in 1952 to 6999kt CO2 eq. in 2019, and then decreased to 5314kt CO2 eq. in 2030. The ozone depletion potential (ODP) peaked at 141t CFC-11 eq. in 2002. When substituting R-410a for R-22, the ODP decreased 50% while the GDP increased 8%. When substituting R-32 for R-410a, there was no effect on the ODP while the GDP decreased 6%. The human health damage due to the global warming effect of refrigerant emission was much higher than that due to the ozone depleting effect. The refrigerant emission in use and waste management phases dominated the human health damage. The dynamic estimation not only allows us to evaluate the performance of past policies but also supports the future sustainable management associated with the health effects of refrigerants.


Assuntos
Poluentes Atmosféricos/análise , Utensílios Domésticos , Gerenciamento de Resíduos , Aquecimento Global , Humanos , Japão , Ozônio/análise
8.
Sci Total Environ ; 584-585: 742-750, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131455

RESUMO

Synthetic landfill leachate was treated using lab-scale vertical flow constructed wetlands (CWs) in sequencing batch modes to assess heavy metal removal efficiencies. The CWs filled with loamy soil and pumice stone were unplanted or planted with common reed (Phragmites australis) (Reed-CW) or common rush (Juncus effusus) (Rush-CW). Synthetic leachate contained acetate, propionate, humate, ammonium, and heavy metals. Common reed grew almost vigorously but common rush partly withered during the 8-month experiment. The CWs reduced the leachate volume effectively by evapotranspiration and removed easily degradable organic matter, color, and ammonium. Furthermore, the CWs demonstrated high removal amounts for heavy metals such as Zn, Cr, Ni, Cd, Fe, and Pb, but not Mn from leachate. The metal removal amounts in the CWs were low for high-strength leachate (influent concentration increased from one time to three times) or under short retention time (batch cycle shortened from 3days to 1day). The Rush-CW showed slightly lower removal amounts for Cr, Ni, Mn, and Cd, although the Reed-CW showed lower Mn removal amounts than the unplanted CW did. However, Cd, Cr, Pb, Ni, and Zn were highly accumulated in the upper soil layer in the planted CW by rhizofiltration with adsorption compared with unplanted CW, indicating that the emergent plants would be helpful for decreasing the dredging soil depth for the final removal of heavy metals. Although the emergent plants were minor sinks in comparison with soil, common rush had higher bioconcentration factors and translocation factors for heavy metals than common reed had.

9.
Sci Total Environ ; 578: 566-576, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836343

RESUMO

Lab-scale vertical flow constructed wetlands (CWs) were used to remove phenol, bisphenol A (BPA), and 4-tert-butylphenol (4-t-BP) from synthetic young and old leachate. Removal percentages of phenolic compounds from the CWs were in the following order: phenol (88-100%)>4-t-BP (18-100%)≥BPA (9-99%). In all CWs, phenol was removed almost completely from leachate. Results show that BPA and 4-t-BP were removed more efficiently from CWs planted with Phragmites australis than from unplanted CWs, from old leachate containing lower amounts of acetate and propionate as easily degradable carbon sources than from young leachate, and in the dry season mode with long retention time than in the wet season mode with short retention time. Adsorption by initial removal and subsequent biodegradation processes might be major removal processes for these phenolic compounds. The presence of plant is beneficial for enrichment of BPA-degrading and 4-t-BP-degrading bacteria and for the carbon source utilization potential of microbes in CWs.


Assuntos
Compostos Benzidrílicos/isolamento & purificação , Fenóis/isolamento & purificação , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/isolamento & purificação , Áreas Alagadas , Biodegradação Ambiental
10.
Environ Res ; 106(2): 156-69, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18023428

RESUMO

The standard biogenic volatile organic compound (BVOC) emissions from 10 Japanese plant species (Quercus serrata, Quercus crispula, Fagus crenata, Quercus acutissima Carruthers, Quercus glauca, Quercus myrsinaefolia, Cryptomeria japonica, Chamaecyparis obtusa, Pinus densiflora, and rice [Oryza sativa]) were measured. These species were selected due to their abundance in the estimated domain (47,000 km(2)) of the Kinki region. BVOC emission experiments were conducted in a growth chamber where temperature and light intensity can be controlled. Temperature was set at the average summer temperature in Osaka and at 5 degrees C above average. Light intensity was set at 1000, 335, and 0 micromol m(-2)s(-1) during day time. The amount of BVOC emission was high around noon due to the rise of ambient temperature. It was also found that the total emission rates and compositions of BVOC varied significantly among the plant species. Q. serrata, Q. crispula, F. crenata, Q. acutissima Carruthers, Q. glauca, and Q. myrsinaefolia emitted isoprene and showed emission dependence on light intensity and temperature. C. japonica, P. densiflora, C. obtusa, and O. sativa emitted monoterpenes and also showed emission dependence on temperature; however, only C. japonica and P. densiflora showed emission dependence on light intensity. Using BVOC emissions data from 10 plant species and forest data, BVOC emission potential maps were made. The emission of isoprene and monoterpenes from the Kinki region were estimated to be 596 and 54 ton h(-1), respectively. Seasonal and diurnal variations of BVOC emissions potential were also estimated. Of note, though the amount of monoterpenes from O. sativa is small, it contributes approximately 5% to the total monoterpene emissions due to the huge land area covered by paddy fields.


Assuntos
Agricultura , Poluentes Atmosféricos/análise , Compostos Orgânicos/análise , Plantas/química , Árvores , Monitoramento Ambiental , Humanos , Japão , Luz , Monoterpenos/análise , Folhas de Planta/química , Transpiração Vegetal , Estações do Ano , Temperatura , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA