Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Diabetol ; 23(1): 104, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504284

RESUMO

The 9th Cardiovascular Outcome Trial (CVOT) Summit: Congress on Cardiovascular, Kidney, and Metabolic Outcomes was held virtually on November 30-December 1, 2023. This reference congress served as a platform for in-depth discussions and exchange on recently completed outcomes trials including dapagliflozin (DAPA-MI), semaglutide (SELECT and STEP-HFpEF) and bempedoic acid (CLEAR Outcomes), and the advances they represent in reducing the risk of major adverse cardiovascular events (MACE), improving metabolic outcomes, and treating obesity-related heart failure with preserved ejection fraction (HFpEF). A broad audience of endocrinologists, diabetologists, cardiologists, nephrologists and primary care physicians participated in online discussions on guideline updates for the management of cardiovascular disease (CVD) in diabetes, heart failure (HF) and chronic kidney disease (CKD); advances in the management of type 1 diabetes (T1D) and its comorbidities; advances in the management of CKD with SGLT2 inhibitors and non-steroidal mineralocorticoid receptor antagonists (nsMRAs); and advances in the treatment of obesity with GLP-1 and dual GIP/GLP-1 receptor agonists. The association of diabetes and obesity with nonalcoholic steatohepatitis (NASH; metabolic dysfunction-associated steatohepatitis, MASH) and cancer and possible treatments for these complications were also explored. It is generally assumed that treatment of chronic diseases is equally effective for all patients. However, as discussed at the Summit, this assumption may not be true. Therefore, it is important to enroll patients from diverse racial and ethnic groups in clinical trials and to analyze patient-reported outcomes to assess treatment efficacy, and to develop innovative approaches to tailor medications to those who benefit most with minimal side effects. Other keys to a successful management of diabetes and comorbidities, including dementia, entail the use of continuous glucose monitoring (CGM) technology and the implementation of appropriate patient-physician communication strategies. The 10th Cardiovascular Outcome Trial Summit will be held virtually on December 5-6, 2024 ( http://www.cvot.org ).


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Insuficiência Cardíaca , Insuficiência Renal Crônica , Humanos , Insuficiência Cardíaca/complicações , Automonitorização da Glicemia , Volume Sistólico , Glicemia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Obesidade/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Diabetes Mellitus/tratamento farmacológico , Rim , Diabetes Mellitus Tipo 2/tratamento farmacológico
2.
Arch Microbiol ; 194(3): 157-66, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21833509

RESUMO

Clostridium aminobutyricum ferments 4-aminobutyrate (γ-aminobutyrate, GABA) to ammonia, acetate and butyrate via 4-hydroxybutyrate that is activated to the CoA-thioester catalyzed by 4-hydroxybutyrate CoA-transferase. Then, 4-hydroxybutyryl-CoA is dehydrated to crotonyl-CoA, which disproportionates to butyryl-CoA and acetyl-CoA. Cocrystallization of the CoA-transferase with the alternate substrate butyryl-CoA yielded crystals with non-covalently bound CoA and two water molecules at the active site. Most likely, butyryl-CoA reacted with the active site Glu238 to CoA and the mixed anhydride, which slowly hydrolyzed during crystallization. The structure of the CoA is similar but less stretched than that of the CoA-moiety of the covalent enzyme-CoA-thioester in 4-hydroxybutyrate CoA-transferase from Shewanella oneidensis. In contrast to the structures of the apo-enzyme and enzyme-CoA-thioester, the structure described here has a closed conformation, probably caused by a flip of the active site loop (residues 215-219). During turnover, the closed conformation may protect the anhydride intermediate from hydrolysis and CoA from dissociation from the enzyme. Hence, one catalytic cycle changes conformation of the enzyme four times: free enzyme-open conformation, CoA+ anhydride 1-closed, enzyme-CoA-thioester-open, CoA + anhydride-2-closed, free enzyme-open.


Assuntos
Clostridium/enzimologia , Coenzima A-Transferases/química , Coenzima A/química , Acil Coenzima A/química , Catálise , Domínio Catalítico , Fermentação , Estrutura Quaternária de Proteína
3.
Biol Chem ; 390(12): 1251-63, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19804364

RESUMO

4-Hydroxybutyrate CoA-transferases (4-HB-CoAT) takes part in the fermentation of 4-aminobutyrate to ammonia, acetate, and butyrate in anaerobic bacteria such as Clostridium aminobutyricum and Porphyromonas gingivalis or facultative anaerobic bacteria such as Shewanella oneidensis. Site-directed mutagenesis of the highly active enzyme has identified the catalytic glutamate residue as E238. Crystal structure of this enzyme has been determined at a resolution of 1.85 A. The 438-amino acid residue polypeptide chain folds into two topologically similar domains with an open alpha/beta-fold, which is also found in other CoAT family I and family II members. The data indicate that the members of CoAT families I and II are closely related; the latter only lacking the catalytic glutamate residue. A putative co-substrate binding site for the 4-HB-CoAT was identified, in which a 4-hydroxybutyrate molecule has been modeled. This site is also responsible for binding the acetyl group of acetyl-CoA or the succinyl group of succinyl-CoA in succinyl-CoA:3-oxoacid CoA-transferase from mammalian mitochondria. Mutations of relevant active site amino acid residues have been produced and their activities tested to corroborate the proposed structural model for substrate binding. 4-HB-CoAT from C. aminobutyricum represents the only functionally characterized 4-HB-CoAT present in the structural database.


Assuntos
Clostridium/enzimologia , Coenzima A-Transferases/química , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Coenzima A-Transferases/genética , Coenzima A-Transferases/metabolismo , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
4.
J Mol Biol ; 391(3): 609-20, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19559030

RESUMO

3-Methylitaconate-Delta-isomerase (Mii) participates in the nicotinate fermentation pathway of the anaerobic soil bacterium Eubacterium barkeri (order Clostridiales) by catalyzing the reversible conversion of (R)-3-methylitaconate (2-methylene-3-methylsuccinate) to 2,3-dimethylmaleate. The enzyme is also able to catalyze the isomerization of itaconate (methylenesuccinate) to citraconate (methylmaleate) with ca 10-fold higher K(m) but > 1000-fold lower k(cat). The gene mii from E. barkeri was cloned and expressed in Escherichia coli. The protein produced with a C-terminal Strep-tag exhibited the same specific activity as the wild-type enzyme. The crystal structure of Mii from E. barkeri has been solved at a resolution of 2.70 A. The asymmetric unit of the P2(1)2(1)2(1) unit cell with parameters a = 53.1 A, b = 142.3 A, and c = 228.4 A contains four molecules of Mii. The enzyme belongs to a group of isomerases with a common structural feature, the so-called diaminopimelate epimerase fold. The monomer of 380 amino acid residues has two topologically similar domains exhibiting an alpha/beta-fold. The active site is situated in a cleft between these domains. The four Mii molecules are arranged as a tetramer with 222 symmetry for the N-terminal domains. The C-terminal domains have different relative positions with respect to the N-terminal domains resulting in a closed conformation for molecule A and two distinct open conformations for molecules B and D. The C-terminal domain of molecule C is disordered. The Mii active site contains the putative catalytic residues Lys62 and Cys96, for which mechanistic roles are proposed based on a docking experiment of the Mii substrate complex. The active sites of Mii and the closely related PrpF, most likely a methylaconitate Delta-isomerase, have been compared. The overall architecture including the active-site Lys62, Cys96, His300, and Ser17 (Mii numbering) is similar. This positioning of (R)-3-methylitaconate allows Cys96 (as thiolate) to deprotonate C-3 and (as thiol) to donate a proton to the methylene carbon atom of the resulting allylic carbanion. Interestingly, the active site of isopentenyl diphosphate isomerase type I also contains a cysteine that cooperates with glutamate rather than lysine. It has been proposed that the initial step in this enzyme is a protonation generating a tertiary carbocation intermediate.


Assuntos
Proteínas de Bactérias/química , Isomerases de Ligação Dupla Carbono-Carbono/química , Eubacterium/enzimologia , Modelos Moleculares , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Cristalografia por Raios X , Dados de Sequência Molecular
5.
Biochem Biophys Res Commun ; 380(1): 183-7, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19167362

RESUMO

Homotypic interactions of death domains (DD) mediate complex formation between MyD88 and IL-1 receptor-associated kinases (IRAKs). A truncated splice variant of MyD88, MyD88s, cannot recruit IRAK-4 and fails to elicit inflammatory responses. We have generated recombinant DD of MyD88 and IRAK-4, both alone and extended by the linkers to TIR or kinase domains. We show that both MyD88 DD variants bind to the linker-extended IRAK-4 DD and pull-down full-length IRAK-4 from monocyte extracts. By contrast, residues up to Glu(116) from the DD-kinase connector of IRAK-4 are needed for strong interactions with the adaptor. Our findings indicate that residues 110-120, which form a C-terminal extra helix in MyD88, but not the irregular linker between DD and TIR domains, are required for IRAK-4 recruitment, and provide a straightforward explanation for the negative regulation of innate immune responses mediated by MyD88s.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Sequência de Aminoácidos , Animais , Dimerização , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Humanos , Imunidade Inata , Quinases Associadas a Receptores de Interleucina-1/química , Quinases Associadas a Receptores de Interleucina-1/genética , Modelos Químicos , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/química , Fator 88 de Diferenciação Mieloide/genética , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
J Mol Biol ; 352(4): 918-31, 2005 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-16125198

RESUMO

Atypical protein kinases C (aPKCs) play critical roles in signaling pathways that control cell growth, differentiation and survival. Therefore, they constitute attractive targets for the development of novel therapeutics against cancer. The crystal structure of the catalytic domain of atypical PKCiota in complex with the bis(indolyl)maleimide inhibitor BIM1 has been determined at 3.0A resolution within the frame of the European Structural Proteomics Project SPINE. The overall structure exhibits the classical bilobal kinase fold and is in its fully activated form. Both phosphorylation sites (Thr403 in the activation loop, and Thr555 in the turn motif) are well defined in the structure and form intramolecular ionic contacts that make an important contribution in stabilizing the active conformation of the catalytic subunit. The phosphorylation site in the hydrophobic motif of atypical PKCs is replaced by the phosphorylation mimic glutamate and this is also clearly seen in the structure of PKCiota (residue 574). This structure determination for the first time provides the architecture of the turn motif phosphorylation site, which is characteristic for PKCs and PKB/AKT, and is completely different from that in PKA. The bound BIM1 inhibitor blocks the ATP-binding site and puts the kinase domain into an intermediate open conformation. The PKCiota-BIM1 complex is the first kinase domain crystal structure of any atypical PKC and constitutes the basis for rational drug design for selective PKCiota inhibitors.


Assuntos
Isoenzimas/química , Proteína Quinase C/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Glicina/química , Humanos , Indóis/metabolismo , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Maleimidas/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Alinhamento de Sequência , Especificidade por Substrato
7.
FEMS Microbiol Lett ; 226(1): 31-7, 2003 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-13129604

RESUMO

Coproporphyrinogen-III oxidase (CPO) catalyses the conversion of coproporphyrinogen-III to protoporphyrinogen-IX in the haem biosynthetic pathway, and its deficient activity is associated with human hereditary coproporphyria. The 47% sequence identity between the oxygen-dependent CPO from Escherichia coli and its human counterpart makes the bacterial enzyme a good model system for structural studies of this disease. Therefore, we overexpressed and purified to homogeneity the oxygen-dependent CPO from E. coli and its selenomethionine derivative fused with a His(6)-tag. Both preparations showed a specific activity of 37500 U mg(-1), had a subunit molecular mass of 35 kDa and behaved as a compact shaped dimer. First crystallisation trials produced plate-shaped diffracting crystals.


Assuntos
Coproporfirinogênio Oxidase/isolamento & purificação , Coproporfirinogênio Oxidase/metabolismo , Escherichia coli/enzimologia , Sequência de Aminoácidos , Coproporfirinogênio Oxidase/química , Coproporfirinogênio Oxidase/genética , Coproporfirinogênios/metabolismo , Cristalização , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Subunidades Proteicas/química , Protoporfirinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise Espectral
8.
Eur J Biochem ; 270(19): 3904-15, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14511372

RESUMO

The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH, respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lack of knowledge on the heme content and the oligomeric enzyme status. Based on EPR and Mössbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Gonçalves, L.M.L., Costa, C., Lampreia, J., Huber, R., Moura, J.J.G., Moura, I. & Romão, M. (2003) J. Biol. Chem. 278, 17455-17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes. NrfA contains the high-spin catalytic site (-80 mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of the NrfH subunit. The four NrfH hemes are all in a low-spin state (S = 1/2). One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Citocromos a1 , Citocromos c1 , Desulfovibrio/enzimologia , Nitrato Redutases/isolamento & purificação , Nitrato Redutases/metabolismo , Proteínas de Ligação a RNA/isolamento & purificação , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Desulfovibrio/genética , Espectroscopia de Ressonância de Spin Eletrônica , Eletroforese em Gel de Poliacrilamida , Heme/análise , Dados de Sequência Molecular , Nitrato Redutases/química , Nitrato Redutases/genética , Oxirredução , Conformação Proteica , Subunidades Proteicas , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Homologia de Sequência de Aminoácidos , Solubilidade , Espectroscopia de Mossbauer , Fatores de Transcrição/química , Fatores de Transcrição/genética
9.
J Biol Chem ; 278(19): 17455-65, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12618432

RESUMO

The gene encoding cytochrome c nitrite reductase (NrfA) from Desulfovibrio desulfuricans ATCC 27774 was sequenced and the crystal structure of the enzyme was determined to 2.3-A resolution. In comparison with homologous structures, it presents structural differences mainly located at the regions surrounding the putative substrate inlet and product outlet, and includes a well defined second calcium site with octahedral geometry, coordinated to propionates of hemes 3 and 4, and caged by a loop non-existent in the previous structures. The highly negative electrostatic potential in the environment around hemes 3 and 4 suggests that the main role of this calcium ion may not be electrostatic but structural, namely in the stabilization of the conformation of the additional loop that cages it and influences the solvent accessibility of heme 4. The NrfA active site is similar to that of peroxidases with a nearby calcium site at the heme distal side nearly in the same location as occurs in the class II and class III peroxidases. This fact suggests that the calcium ion at the distal side of the active site in the NrfA enzymes may have a similar physiological role to that reported for the peroxidases.


Assuntos
Cálcio/metabolismo , Desulfovibrio/enzimologia , Nitrito Redutases/análise , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico/genética , Grupo dos Citocromos c/análise , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Dados de Sequência Molecular , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Conformação Proteica , Alinhamento de Sequência
10.
Structure ; 10(9): 1261-72, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12220497

RESUMO

Desulfovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H(+) by buried waters and protonable amino acids and for CO(2) through a hydrophobic channel.


Assuntos
Desulfovibrio/enzimologia , Formiato Desidrogenases/química , Formiato Desidrogenases/metabolismo , Tungstênio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dióxido de Carbono/metabolismo , Cristalografia por Raios X , Desulfovibrio/genética , Elétrons , Formiato Desidrogenases/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Prótons , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA