Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 242
Filtrar
1.
Cancer Immunol Res ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133127

RESUMO

Regulatory T cells (Tregs) are important players in the tumor microenvironment. However, the mechanisms behind their immunosuppressive effects are poorly understood. We found that CCR6-CCL20 activity in tumor-infiltrating Tregs is associated with greater glycolytic activity and ablation of Ccr6 reduced glycolysis and lactic acid production while increasing compensatory glutamine metabolism. Immunosuppressive activity towards CD8+ T cells was abrogated in Ccr6-/- Tregs due to reduction in activation-induced glycolysis. Furthermore, Ccr6-/- mice exhibited improved survival across multiple tumor models compared to wildtype mice, and Treg and CD8+ T-cell depletion abrogated the improvement. In addition, Ccr6 ablation further promoted the efficacy of anti-PD-1 therapy in a preclinical glioma model. Follow-up knockdown of Ccl20 with siRNA also demonstrated improvement in antitumor efficacy. Our results unveil CCR6 as a marker and regulator of Treg-induced immunosuppression and identify approaches to target the metabolic determinants of Treg immunosuppressive activity.

2.
Immunity ; 57(8): 1864-1877.e9, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39111315

RESUMO

Tumor-infiltrating lymphocyte (TIL) hypofunction contributes to the progression of advanced cancers and is a frequent target of immunotherapy. Emerging evidence indicates that metabolic insufficiency drives T cell hypofunction during tonic stimulation, but the signals that initiate metabolic reprogramming in this context are largely unknown. Here, we found that Meteorin-like (METRNL), a metabolically active cytokine secreted by immune cells in the tumor microenvironment (TME), induced bioenergetic failure of CD8+ T cells. METRNL was secreted by CD8+ T cells during repeated stimulation and acted via both autocrine and paracrine signaling. Mechanistically, METRNL increased E2F-peroxisome proliferator-activated receptor delta (PPARδ) activity, causing mitochondrial depolarization and decreased oxidative phosphorylation, which triggered a compensatory bioenergetic shift to glycolysis. Metrnl ablation or downregulation improved the metabolic fitness of CD8+ T cells and enhanced tumor control in several tumor models, demonstrating the translational potential of targeting the METRNL-E2F-PPARδ pathway to support bioenergetic fitness of CD8+ TILs.


Assuntos
Linfócitos T CD8-Positivos , Linfócitos do Interstício Tumoral , Mitocôndrias , Microambiente Tumoral , Linfócitos T CD8-Positivos/imunologia , Animais , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Camundongos , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , Transdução de Sinais , Metabolismo Energético , PPAR delta/metabolismo , Linhagem Celular Tumoral , Neoplasias/imunologia , Glicólise , Camundongos Knockout , Fosforilação Oxidativa
3.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955420

RESUMO

BACKGROUND: Fludarabine in combination with cyclophosphamide (FC) is the standard lymphodepletion regimen for CAR T-cell therapy (CAR T). A national fludarabine shortage in 2022 necessitated the exploration of alternative regimens with many centers employing single-agent bendamustine as lymphodepletion despite a lack of clinical safety and efficacy data. To fill this gap in the literature, we evaluated the safety, efficacy, and expansion kinetics of bendamustine as lymphodepletion prior to axicabtagene ciloleucel (axi-cel) therapy. METHODS: 84 consecutive patients with relapsed or refractory large B-cell lymphoma treated with axi-cel and managed with a uniform toxicity management plan at Stanford University were studied. 27 patients received alternative lymphodepletion with bendamustine while 57 received FC. RESULTS: Best complete response rates were similar (73.7% for FC and 74% for bendamustine, p=0.28) and there was no significant difference in 12-month progression-free survival or overall survival estimates (p=0.17 and p=0.62, respectively). The frequency of high-grade cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome was similar in both the cohorts. Bendamustine cohort experienced lower proportions of hematological toxicities and antibiotic use for neutropenic fever. Immune reconstitution, as measured by quantitative assessment of cellular immunity, was better in bendamustine cohort as compared with FC cohort. CAR T expansion as measured by peak expansion and area under the curve for expansion was comparable between cohorts. CONCLUSIONS: Bendamustine is a safe and effective alternative lymphodepletion conditioning for axi-cel with lower early hematological toxicity and favorable immune reconstitution.


Assuntos
Cloridrato de Bendamustina , Produtos Biológicos , Linfoma Difuso de Grandes Células B , Humanos , Cloridrato de Bendamustina/uso terapêutico , Cloridrato de Bendamustina/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Produtos Biológicos/efeitos adversos , Adulto , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico
4.
Blood ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968138

RESUMO

While chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell malignancies, many patients relapse and therefore strategies to improve antitumor immunity are needed. We previously designed a novel autologous bispecific CAR targeting CD19 and CD22 (CAR19-22), which was well tolerated and associated with high response rates but relapse was common. Interleukin-15 (IL15) induces proliferation of diverse immune cells and can augment lymphocyte trafficking. Here, we report the results of a phase 1 clinical trial of the first combination of a novel recombinant polymer-conjugated IL15 receptor agonist (NKTR-255), with CAR19-22, in adults with relapsed / refractory B-cell acute lymphoblastic leukemia. Eleven patients were enrolled, nine of whom successfully received CAR19-22 followed by NKTR-255. There were no dose limiting toxicities, with transient fever and myelosuppression as the most common possibly related toxicities. We observed favorable efficacy with eight out of nine patients (89%) achieving measurable residual disease negative remission. At 12 months, progression-free survival for NKTR-255 was double that of historical controls (67% vs 38%). We performed correlative analyses to investigate the effects of IL15 receptor agonism. Cytokine profiling showed significant increases in IL15 and the chemokines CXCL9 and CXCL10. The increase in chemokines was associated with decreases in absolute lymphocyte counts and CD8+ CAR T-cells in blood and ten-fold increases in CSF CAR-T cells, suggesting lymphocyte trafficking to tissue. Combining NKTR-255 with CAR19-22 was safe, feasible and associated with high rates of durable responses (NCT03233854).

5.
Nat Commun ; 15(1): 5956, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009581

RESUMO

DNA methylation (DNAm) is one of the most reliable biomarkers of aging across mammalian tissues. While the age-dependent global loss of DNAm has been well characterized, DNAm gain is less characterized. Studies have demonstrated that CpGs which gain methylation with age are enriched in Polycomb Repressive Complex 2 (PRC2) targets. However, whole-genome examination of all PRC2 targets as well as determination of the pan-tissue or tissue-specific nature of these associations is lacking. Here, we show that low-methylated regions (LMRs) which are highly bound by PRC2 in embryonic stem cells (PRC2 LMRs) gain methylation with age in all examined somatic mitotic cells. We estimated that this epigenetic change represents around 90% of the age-dependent DNAm gain genome-wide. Therefore, we propose the "PRC2-AgeIndex," defined as the average DNAm in PRC2 LMRs, as a universal biomarker of cellular aging in somatic cells which can distinguish the effect of different anti-aging interventions.


Assuntos
Envelhecimento , Biomarcadores , Metilação de DNA , Epigênese Genética , Complexo Repressor Polycomb 2 , Rejuvenescimento , Animais , Envelhecimento/metabolismo , Envelhecimento/genética , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Rejuvenescimento/fisiologia , Biomarcadores/metabolismo , Humanos , Camundongos , Senescência Celular/genética , Ilhas de CpG , Células-Tronco Embrionárias/metabolismo , Masculino , Feminino
6.
Lancet ; 404(10450): 353-363, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-38996463

RESUMO

BACKGROUND: Outcomes are poor for patients with large B-cell lymphoma who relapse after CD19-directed chimeric antigen receptor (CAR) T-cell therapy (CAR19). CD22 is a nearly universally expressed B-cell surface antigen and the efficacy of a CD22-directed CAR T-cell therapy (CAR22) in large B-cell lymphoma is unknown, which was what we aimed to examine in this study. METHODS: In this single centre, open-label, dose-escalation phase 1 trial, we intravenously administered CAR22 at two dose levels (1 million and 3 million CAR22-positive T cells per kg of bodyweight) to adult patients (aged ≥18 years) who relapsed after CAR19 or had CD19-negative large B-cell lymphoma. The primary endpoints were manufacturing feasibility, safety measured by the incidence and severity of adverse events and dose-limiting toxicities, and identification of the maximum tolerated dose (ie, the recommended phase 2 dose). This study is registered with ClinicalTrials.gov (NCT04088890) and is active, but closed for enrolment. FINDINGS: From Oct 17, 2019, to Oct 19, 2022, a total of 41 patients were assessed for eligibility; however, one patient withdrew. 40 patients underwent leukapheresis and 38 (95%) had CAR T-cell products manufactured successfully. The median age was 65 years (range 25-84), 17 (45%) were women, 32 (84%) had elevated pretreatment lactate dehydrogenase, 11 (29%) had refractory disease to all previous therapies, and patients had received a median of four lines of previous therapy (range 3-8). Of the 38 patients treated, 37 (97%) had relapsed after previous CAR19. The identified maximum tolerated dose was 1 million CAR T cells per kg. Of 29 patients who received the maximum tolerated dose, no patients developed a dose-limiting toxicity or grade 3 or higher cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, or immune effector cell-associated haemophagocytic lymphohistiocytosis-like syndrome. INTERPRETATION: This trial identifies CD22 as an immunotherapeutic target in large B-cell lymphoma and demonstrates the durable clinical activity of CAR22 in patients with disease progression after CAR19 therapy. Although these findings are promising, it is essential to recognise that this is a phase 1 dose-finding study. Further investigations are warranted to establish the long-term efficacy and to delineate the patient subgroups that will derive the most benefit from this therapeutic approach. FUNDING: National Cancer Institute, National Institutes of Health, Stanford Cancer Institute, Leukemia & Lymphoma Society, Parker Institute for Cancer Immunotherapy, Lymph & Co, and the European Hematology Association.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/imunologia , Dose Máxima Tolerável , Receptores de Antígenos Quiméricos/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Idoso de 80 Anos ou mais
8.
N Engl J Med ; 390(22): 2047-2060, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38865660

RESUMO

BACKGROUND: The risk of second tumors after chimeric antigen receptor (CAR) T-cell therapy, especially the risk of T-cell neoplasms related to viral vector integration, is an emerging concern. METHODS: We reviewed our clinical experience with adoptive cellular CAR T-cell therapy at our institution since 2016 and ascertained the occurrence of second tumors. In one case of secondary T-cell lymphoma, a broad array of molecular, genetic, and cellular techniques were used to interrogate the tumor, the CAR T cells, and the normal hematopoietic cells in the patient. RESULTS: A total of 724 patients who had received T-cell therapies at our center were included in the study. A lethal T-cell lymphoma was identified in a patient who had received axicabtagene ciloleucel therapy for diffuse large B-cell lymphoma, and both lymphomas were deeply profiled. Each lymphoma had molecularly distinct immunophenotypes and genomic profiles, but both were positive for Epstein-Barr virus and were associated with DNMT3A and TET2 mutant clonal hematopoiesis. No evidence of oncogenic retroviral integration was found with the use of multiple techniques. CONCLUSIONS: Our results highlight the rarity of second tumors and provide a framework for defining clonal relationships and viral vector monitoring. (Funded by the National Cancer Institute and others.).


Assuntos
Antineoplásicos Imunológicos , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Linfoma de Células T , Segunda Neoplasia Primária , Receptores de Antígenos Quiméricos , Feminino , Humanos , Pessoa de Meia-Idade , Produtos Biológicos/efeitos adversos , Produtos Biológicos/uso terapêutico , Hematopoiese Clonal , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/genética , Imunoterapia Adotiva/efeitos adversos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/terapia , Linfoma de Células T/etiologia , Linfoma de Células T/genética , Linfoma de Células T/imunologia , Linfoma de Células T/terapia , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/etiologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Integração Viral
9.
Nat Med ; 30(7): 1836-1846, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38886624

RESUMO

Increasing numbers of cell and gene therapies (CGTs) are emerging to treat and cure pediatric diseases. However, small market sizes limit the potential return on investment within the traditional biopharmaceutical drug development model, leading to a market failure. In this Perspective, we discuss major factors contributing to this failure, including high manufacturing costs, regulatory challenges, and licensing practices that do not incorporate pediatric development milestones, as well as potential solutions. We propose the creation of a new entity, the Pediatric Advanced Medicines Biotech, to lead late-stage development and commercialize pediatric CGTs outside the traditional biopharmaceutical model in the United States-where organized efforts to solve this problem have been lacking. The Pediatric Advanced Medicines Biotech would partner with the academic ecosystem, manufacture products in academic good manufacturing practice facilities and work closely with regulatory bodies, to ferry CGTs across the drug development 'valley of death' and, ultimately, increase access to lifesaving treatments for children in need.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Terapia Genética , Humanos , Terapia Genética/legislação & jurisprudência , Criança , Estados Unidos , Pediatria , Acessibilidade aos Serviços de Saúde
10.
Nature ; 630(8016): 457-465, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38750365

RESUMO

Adoptively transferred T cells and agents designed to block the CD47-SIRPα axis are promising cancer therapeutics that activate distinct arms of the immune system1,2. Here we administered anti-CD47 antibodies in combination with adoptively transferred T cells with the goal of enhancing antitumour efficacy but observed abrogated therapeutic benefit due to rapid macrophage-mediated clearance of T cells expressing chimeric antigen receptors (CARs) or engineered T cell receptors. Anti-CD47-antibody-mediated CAR T cell clearance was potent and rapid enough to serve as an effective safety switch. To overcome this challenge, we engineered the CD47 variant CD47(Q31P) (47E), which engages SIRPα and provides a 'don't eat me' signal that is not blocked by anti-CD47 antibodies. TCR or CAR T cells expressing 47E are resistant to clearance by macrophages after treatment with anti-CD47 antibodies, and mediate substantial, sustained macrophage recruitment to the tumour microenvironment. Although many of the recruited macrophages manifested an M2-like profile3, the combined therapy synergistically enhanced antitumour efficacy. Our study identifies macrophages as major regulators of T cell persistence and illustrates the fundamental challenge of combining T-cell-directed therapeutics with those designed to activate macrophages. It delivers a therapeutic approach that is capable of simultaneously harnessing the antitumour effects of T cells and macrophages, offering enhanced potency against solid tumours.


Assuntos
Antígeno CD47 , Imunoterapia Adotiva , Neoplasias , Linfócitos T , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Diferenciação/imunologia , Antígenos de Diferenciação/metabolismo , Antígeno CD47/genética , Antígeno CD47/imunologia , Antígeno CD47/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Macrófagos/citologia , Macrófagos/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Anticorpos/imunologia , Anticorpos/uso terapêutico , Ativação de Macrófagos
13.
Nature ; 629(8010): 211-218, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600391

RESUMO

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.


Assuntos
Proteína Forkhead Box O1 , Memória Imunológica , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Linfócitos T , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Cromatina/metabolismo , Cromatina/genética , Proteína Forkhead Box O1/metabolismo , Edição de Genes , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/citologia
14.
Transplant Cell Ther ; 30(6): 565-579, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38588880

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable efficacy in relapsed/refractory (r/r) B cell malignancies, including in pediatric patients with acute lymphoblastic leukemia (ALL). Expanding this success to other hematologic and solid malignancies is an area of active research and, although challenges remain, novel solutions have led to significant progress over the past decade. Ongoing clinical trials for CAR T cell therapy for T cell malignancies and acute myeloid leukemia (AML) have highlighted challenges, including antigen specificity with off-tumor toxicity and persistence concerns. In T cell malignancies, notable challenges include CAR T cell fratricide and prolonged T cell aplasia, which are being addressed with strategies such as gene editing and suicide switch technologies. In AML, antigen identification remains a significant barrier, due to shared antigens across healthy hematopoietic progenitor cells and myeloid blasts. Strategies to limit persistence and circumvent the immunosuppressive tumor microenvironment (TME) created by AML are also being explored. CAR T cell therapies for central nervous system and solid tumors have several challenges, including tumor antigen heterogeneity, immunosuppressive and hypoxic TME, and potential for off-target toxicity. Numerous CAR T cell products have been designed to overcome these challenges, including "armored" CARs and CAR/T cell receptor (TCR) hybrids. Strategies to enhance CAR T cell delivery, augment CAR T cell performance in the TME, and ensure the safety of these products have shown promising results. In this manuscript, we will review the available evidence for CAR T cell use in T cell malignancies, AML, central nervous system (CNS), and non-CNS solid tumor malignancies, and recommend areas for future research.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Criança , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/uso terapêutico , Linfócitos T/imunologia , Linfócitos T/transplante , Adolescente , Adulto , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/uso terapêutico , Microambiente Tumoral/imunologia
15.
Leukemia ; 38(5): 963-968, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491306

RESUMO

Chimeric antigen receptor (CAR) T cells targeting CD22 (CD22-CAR) provide a therapeutic option for patients with CD22+ malignancies with progression after CD19-directed therapies. Using on-site, automated, closed-loop manufacturing, we conducted parallel Phase 1b clinical trials investigating a humanized CD22-CAR with 41BB costimulatory domain in children and adults with heavily treated, relapsed/refractory (r/r) B-ALL. Of 19 patients enrolled, 18 had successful CD22-CAR manufacturing, and 16 patients were infused. High grade (3-4) cytokine release syndrome (CRS) and immune effector-cell-associated neurotoxicity syndrome (ICANS) each occurred in only one patient; however, three patients experienced immune-effector-cell-associated hemophagocytic lymphohistiocytosis-like syndrome (IEC-HS). Twelve of 16 patients (75%) achieved CR with an overall 56% MRD-negative CR rate. Duration of response was overall limited (median 77 days), and CD22 expression was downregulated in 4/12 (33%) available samples at relapse. In summary, we demonstrate that closed-loop manufacturing of CD22-CAR T cells is feasible and is associated with a favorable safety profile and high CR rates in pediatric and adult r/r B-ALL, a cohort with limited CD22-CAR reporting.


Assuntos
Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Receptores de Antígenos Quiméricos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Humanos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Criança , Adulto , Feminino , Masculino , Adolescente , Imunoterapia Adotiva/métodos , Imunoterapia Adotiva/efeitos adversos , Adulto Jovem , Receptores de Antígenos Quiméricos/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Pré-Escolar , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo
16.
Proc Natl Acad Sci U S A ; 121(13): e2320053121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513100

RESUMO

Lysosome-targeting chimeras (LYTACs) are a promising therapeutic modality to drive the degradation of extracellular proteins. However, early versions of LYTAC contain synthetic glycopeptides that cannot be genetically encoded. Here, we present our designs for a fully genetically encodable LYTAC (GELYTAC), making our tool compatible with integration into therapeutic cells for targeted delivery at diseased sites. To achieve this, we replaced the glycopeptide portion of LYTACs with the protein insulin-like growth factor 2 (IGF2). After showing initial efficacy with wild-type IGF2, we increased the potency of GELYTAC using directed evolution. Subsequently, we demonstrated that our engineered GELYTAC construct not only secretes from HEK293T cells but also from human primary T-cells to drive the uptake of various targets into receiver cells. Immune cells engineered to secrete GELYTAC thus represent a promising avenue for spatially selective targeted protein degradation.


Assuntos
Lisossomos , Humanos , Células HEK293 , Proteólise
17.
Blood Adv ; 8(12): 3314-3326, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38498731

RESUMO

ABSTRACT: Chimeric antigen receptor (CAR) T cells directed against CD19 (CAR19) are a revolutionary treatment for B-cell lymphomas (BCLs). CAR19 cell expansion is necessary for CAR19 function but is also associated with toxicity. To define the impact of CAR19 expansion on patient outcomes, we prospectively followed a cohort of 236 patients treated with CAR19 (brexucabtagene autoleucel or axicabtagene ciloleucel) for mantle cell lymphoma (MCL), follicular lymphoma, and large BCL (LBCL) over the course of 5 years and obtained CAR19 expansion data using peripheral blood immunophenotyping for 188 of these patients. CAR19 expansion was higher in patients with MCL than other lymphoma histologic subtypes. Notably, patients with MCL had increased toxicity and required fourfold higher cumulative steroid doses than patients with LBCL. CAR19 expansion was associated with the development of cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and the requirement for granulocyte colony-stimulating factor 14 days after infusion. Younger patients and those with elevated lactate dehydrogenase (LDH) had significantly higher CAR19 expansion. In general, no association between CAR19 expansion and LBCL treatment response was observed. However, when controlling for tumor burden, we found that lower CAR19 expansion in conjunction with low LDH was associated with improved outcomes in LBCL. In sum, this study finds CAR19 expansion principally associates with CAR-related toxicity. Additionally, CAR19 expansion as measured by peripheral blood immunophenotyping may be dispensable to favorable outcomes in LBCL.


Assuntos
Antígenos CD19 , Imunofenotipagem , Imunoterapia Adotiva , Humanos , Masculino , Antígenos CD19/imunologia , Pessoa de Meia-Idade , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Feminino , Idoso , Receptores de Antígenos Quiméricos/imunologia , Adulto , Linfoma de Célula do Manto/imunologia , Linfoma de Célula do Manto/sangue , Idoso de 80 Anos ou mais , Produtos Biológicos
18.
Cell ; 187(5): 1278-1295.e20, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38387457

RESUMO

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA. Applying MEGA to a model of CAR T cell exhaustion, we robustly suppressed inhibitory receptor upregulation and uncovered paired regulators of T cell function through combinatorial CRISPR screening. We additionally implemented druggable regulation of MEGA to control CAR activation in a receptor-independent manner. Lastly, MEGA enabled multiplexed disruption of immunoregulatory metabolic pathways to enhance CAR T cell fitness and anti-tumor activity in vitro and in vivo. MEGA offers a versatile synthetic toolkit for applications in cancer immunotherapy and beyond.


Assuntos
Engenharia Metabólica , Linfócitos T , Humanos , Perfilação da Expressão Gênica , Engenharia Metabólica/métodos , RNA , Transcriptoma
19.
Cancer Cell ; 42(2): 266-282.e8, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38278150

RESUMO

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8+ CAR-T cells express CD39 and CD73, which mediate proximal steps in Ado generation. Here, we sought to enhance CAR-T cell potency by knocking out CD39, CD73, or adenosine receptor 2a (A2aR) but observed only modest effects. In contrast, overexpression of Ado deaminase (ADA-OE), which metabolizes Ado to inosine (INO), induced stemness and enhanced CAR-T functionality. Similarly, CAR-T cell exposure to INO augmented function and induced features of stemness. INO induced profound metabolic reprogramming, diminishing glycolysis, increasing mitochondrial and glycolytic capacity, glutaminolysis and polyamine synthesis, and reprogrammed the epigenome toward greater stemness. Clinical scale manufacturing using INO generated enhanced potency CAR-T cell products meeting criteria for clinical dosing. These results identify INO as a potent modulator of CAR-T cell metabolism and epigenetic stemness programming and deliver an enhanced potency platform for cell manufacturing.


Assuntos
Inosina , Linfócitos T , Humanos , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA