RESUMO
Global migrations of diverse animal species often converge along the same routes, bringing together seasonal assemblages of animals that may compete, prey on each other, and share information or pathogens. These interspecific interactions, when energetic demands are high and the time to complete journeys is short, may influence survival, migratory success, stopover ecology, and migratory routes. Numerous accounts suggest that interspecific co-migrations are globally distributed in aerial, aquatic, and terrestrial systems, although the study of migration to date has rarely investigated species interactions among migrating animals. Here, we test the hypothesis that migrating animals are communities engaged in networks of ecological interactions. We leverage over half a million records of 50 bird species from five bird banding sites collected over 8 to 23 y to test for species associations using social network analyses. We find strong support for persistent species relationships across sites and between spring and fall migration. These relationships may be ecologically meaningful: They are often stronger among phylogenetically related species with similar foraging behaviors and nonbreeding ranges even after accounting for the nonsocial contributions to associations, including overlap in migration timing and habitat use. While interspecific interactions could result in costly competition or beneficial information exchange, we find that relationships are largely positive, suggesting limited competitive exclusion at the scale of a banding station during migratory stopovers. Our findings support an understanding of animal migrations that consist of networked communities rather than random assemblages of independently migrating species, encouraging future studies of the nature and consequences of co-migrant interactions.
Assuntos
Migração Animal , Aves , Ecossistema , Estações do Ano , Animais , Migração Animal/fisiologia , Aves/fisiologiaRESUMO
Isolated mixed-ligand complexes provide tractable model systems in which to study competitive and cooperative binding effects as well as controlled energy flow. Here, we report spectroscopic and isotopologue-selective infrared photofragmentation dynamics of mixed gas-phase Au(12/13CO)n(N2O)m+ complexes. The rich infrared action spectra, which are reproduced well using simulations of calculated lowest energy structures, clarify previous ambiguities in the assignment of vibrational bands, especially accidental coincidence of CO and N2O bands. The fragmentation dynamics exhibit the same unexpected behaviour as reported previously in which, once CO loss channels are energetically accessible, these dominate the fragmentation branching ratios, despite the much lower binding energy of N2O. We have investigated the dynamics computationally by considering anharmonic couplings between a relevant subset of normal modes involving both ligand stretch and intermolecular modes. Discrepancies between correlated and uncorrelated model fit to the ab initio potential energy curves are quantified using a Boltzmann sampled root mean squared deviation providing insight into efficiency of vibrational energy transfer between high frequency ligand stretches and the softer intermolecular modes which break during fragmentation.
RESUMO
Prolonged bed rest impairs standing balance but the underlying mechanisms are uncertain. Previous research suggests strength loss is not the cause, leaving impaired sensorimotor control as an alternative. Here we examine vestibular control of posture in 18 male volunteers before and after 60 days of bed rest. Stochastic vestibular stimulation (SVS) was used to evoke sway responses before, 1 and 6 days after bed rest under different head yaw orientations. The directional accuracy and precision of these responses were calculated from ground reaction force vectors. Bed rest caused up to 63% increases in spontaneous standing sway and 31% reductions in leg strength, changes which were uncorrelated. The increase in sway was exacerbated when the eyes were closed. Mean directions of SVS-evoked sway responses were unaffected, being directed towards the anodal ear and rotating in line with head orientation in the same way before and after bed rest. However, individual trial analysis revealed 25%-30% increases in directional variability, which were significantly correlated with the increase in spontaneous sway (r = 0.48-0.71; P ≤ 0.044) and were still elevated on day 6 post-bed rest. This reveals that individual sway responses may be inappropriately oriented, a finding masked by the averaging process. Our results confirm that impaired balance following prolonged bedrest is not related to loss of strength. Rather, they demonstrate that the sensorimotor transformation process which converts vestibular feedback into appropriately directed balance responses is impaired. KEY POINTS: Prolonged inactivity impairs balance but previous research suggests this is not caused by loss of strength. Here we investigated vestibular control of balance before and after 60 days of bed rest using electrical vestibular stimulation (EVS) to evoke sway responses. Spontaneous sway significantly increased and muscle strength reduced following bed rest, but, in keeping with previous research, these two effects were not correlated. While the overall accuracy of EVS-evoked sway responses was unaffected, their directional variability significantly increased following bed rest, and this was correlated with the increases in spontaneous sway. We have shown that the ability to transform head-centred vestibular feedback into an appropriately directed body sway response is negatively affected by prolonged inactivity; this may contribute to the impaired balance commonly observed following bed rest.
Assuntos
Repouso em Cama , Equilíbrio Postural , Vestíbulo do Labirinto , Humanos , Masculino , Equilíbrio Postural/fisiologia , Adulto , Vestíbulo do Labirinto/fisiologia , Adulto JovemRESUMO
Matrix Gla protein (MGP) is a vitamin K-dependent post-translationally modified protein, highly expressed in vascular and cartilaginous tissues. It is a potent inhibitor of extracellular matrix mineralization. Biallelic loss-of-function variants in the MGP gene cause Keutel syndrome, an autosomal recessive disorder characterized by widespread calcification of various cartilaginous tissues and skeletal and vascular anomalies. In this study, we report four individuals from two unrelated families with two heterozygous variants in MGP, both altering the cysteine 19 residue to phenylalanine or tyrosine. These individuals present with a spondyloepiphyseal skeletal dysplasia characterized by short stature with a short trunk, diffuse platyspondyly, midface retrusion, progressive epiphyseal anomalies and brachytelephalangism. We investigated the cellular and molecular effects of one of the heterozygous deleterious variants (C19F) using both cell and genetically modified mouse models. Heterozygous 'knock-in' mice expressing C19F MGP recapitulate most of the skeletal anomalies observed in the affected individuals. Our results suggest that the main underlying mechanism leading to the observed skeletal dysplasia is endoplasmic reticulum stress-induced apoptosis of the growth plate chondrocytes. Overall, our findings support that heterozygous variants in MGP altering the Cys19 residue cause autosomal dominant spondyloepiphyseal dysplasia, a condition distinct from Keutel syndrome both clinically and molecularly.
Assuntos
Mucopolissacaridose IV , Osteocondrodisplasias , Animais , Humanos , Camundongos , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Osteocondrodisplasias/genética , Proteína de Matriz GlaRESUMO
BACKGROUND: Recently, tracheal narrowing has been recognized as a significant comorbid condition in patients with Morquio A, also known as mucopolysaccharidosis IVA. We studied a large cohort of patients with Morquio A to describe the extent of their tracheal narrowing and its relationship to airway management during anesthesia care. METHODS: This is an observational study, collecting data retrospectively, of a cohort of patients with Morquio A. Ninety-two patients with Morquio A syndrome were enrolled, among whom 44 patients had their airway evaluated by computed tomography angiography and had undergone an anesthetic within a year of the evaluation. Our hypothesis was that the tracheal narrowing as evaluated by computed tomography angiography increases with age in patients with Morquio A. The primary aim of the study was to examine the degree of tracheal narrowing in patients with Morquio A and describe the difficulties encountered during airway management, thus increasing awareness of both the tracheal narrowing and airway management difficulties in this patient population. In addition, the degree of tracheal narrowing was evaluated for its association with age or spirometry parameters using Spearman's rank correlation. Analysis of variance followed by the Bonferroni test was used to further examine the age-based differences in tracheal narrowing for the 3 age groups: 1 to 10 years, 11 to 20 years, and >21 years. RESULTS: Patient age showed a positive correlation with tracheal narrowing ( rs= 0.415; 95% confidence interval [95% CI], 0.138-0.691; P = .005) with older patients having greater narrowing of the trachea. Among spirometry parameters, FEF25%-75% showed an inverse correlation with tracheal narrowing as follows: FEF25%-75% versus tracheal narrowing: ( rs = -0.467; 95% CI, -0.877 to -0.057; P = .007). During anesthetic care, significant airway management difficulties were encountered, including cancelation of surgical procedures, awake intubation using flexible bronchoscope, and failed video laryngoscopy attempts. CONCLUSIONS: Clinically significant tracheal narrowing was present in patients with Morquio A, and the degree of such narrowing likely contributed to the difficulty with airway management during their anesthetic care. Tracheal narrowing worsens with age, but the progression appears to slow down after 20 years of age. In addition to tracheal narrowing, spirometry values of FEF25%-75% may be helpful in the overall evaluation of the airway in patients with Morquio A.
Assuntos
Anestesia , Anestésicos , Mucopolissacaridose IV , Humanos , Lactente , Pré-Escolar , Criança , Adulto Jovem , Adulto , Adolescente , Mucopolissacaridose IV/cirurgia , Estudos Retrospectivos , Anestesia/métodos , Intubação Intratraqueal/efeitos adversos , Intubação Intratraqueal/métodos , Laringoscopia/métodosRESUMO
In this study, mixed carbonyl and nitrous oxide complexes with Rh+ were studied by mass-selective infrared photodissociation spectroscopy in a molecular beam. The infrared spectra, recorded in the region of the CO and N2O NâN stretches, were assigned and interpreted with the aid of simulated spectra of low-energy structural isomers. Clear evidence of an inner coordination shell of four ligands is observed. The observed vibrational structure can be understood on the basis of local mode vibrations in the two ligands. However, there is also evidence of multiple low-lying isomers and cooperative binding effects between the two ligands. In particular, σ donation from directly coordinated nitrous oxide ligands drives more classical carbonyl bonding than has been observed in pure carbonyl complexes. The observed fragmentation branching ratios following resonant infrared absorption are explained by simple statistical and energetic arguments, providing a contrast with those of equivalent Au+ complexes.
RESUMO
Cryptochrome 4a (Cry4a) has been proposed as the sensor at the heart of the magnetic compass in migratory songbirds. Blue-light excitation of this protein produces magnetically sensitive flavin-tryptophan radical pairs whose properties suggest that Cry4a could indeed be suitable as a magnetoreceptor. Here, we use cavity ring-down spectroscopy to measure magnetic field effects on the kinetics of these radical pairs in modified Cry4a proteins from the migratory European robin and from nonmigratory pigeon and chicken. B1/2, a parameter that characterizes the magnetic field-dependence of the reactions, was found to be larger than expected on the basis of hyperfine interactions and to increase with the delay between pump and probe laser pulses. Semiclassical spin dynamics simulations show that this behavior is consistent with a singlet-triplet dephasing (STD) relaxation mechanism. Analysis of the experimental data gives dephasing rate constants, rSTD, in the range 3-6 × 107 s-1. A simple "toy" model due to Maeda, Miura, and Arai [Mol. Phys. 104, 1779-1788 (2006)] is used to shed light on the origin of the time-dependence and the nature of the STD mechanism. Under the conditions of the experiments, STD results in an exponential approach to spin equilibrium at a rate considerably slower than rSTD. We attribute the loss of singlet-triplet coherence to electron hopping between the second and third tryptophans of the electron transfer chain and comment on whether this process could explain differences in the magnetic sensitivity of robin, chicken, and pigeon Cry4a's.
Assuntos
Proteínas Aviárias , Galinhas , Criptocromos , Animais , Galinhas/fisiologia , Criptocromos/química , Criptocromos/fisiologia , Campos Magnéticos , Migração AnimalRESUMO
Knee arthroplasty, both total knee and unicompartmental, has had a significant impact on millions of patients globally. Although satisfaction is usually high, complications such as periprosthetic fracture are increasingly common. Distal femur periprosthetic fractures are relatively well researched and understood in comparison with periprosthetic proximal tibia fractures (PTFs). The management of PTFs is essentially an evidence-free area. This review explores the literature (or lack thereof) and integrates cases from Australia and Japan. As it stands, there is scant literature relating to all facets of PTFs, including, most concerningly, the management of them. Larger studies are required to help further investigate this important interface between arthroplasty and orthopaedic trauma. As a guide, those with loose prostheses will likely benefit most from revision total knee arthroplasty, while those with well-fixed prostheses can be managad according to the fracture with homage paid to the presence of the prosthesis. The use of periarticular locked plates is likely a better option over conventional large or small fragment plates. Nonoperative management is a viable option for selected individuals and can be associated with favorable outcomes.
RESUMO
Climate change models often assume similar responses to temperatures across the range of a species, but local adaptation or phenotypic plasticity can lead plants and animals to respond differently to temperature in different parts of their range. To date, there have been few tests of this assumption at the scale of continents, so it is unclear if this is a large-scale problem. Here, we examined the assumption that insect taxa show similar responses to temperature at 96 sites in grassy habitats across North America. We sampled insects with Malaise traps during 2019-2021 (N = 1041 samples) and examined the biomass of insects in relation to temperature and time of season. Our samples mostly contained Diptera (33%), Lepidoptera (19%), Hymenoptera (18%), and Coleoptera (10%). We found strong regional differences in the phenology of insects and their response to temperature, even within the same taxonomic group, habitat type, and time of season. For example, the biomass of nematoceran flies increased across the season in the central part of the continent, but it only showed a small increase in the Northeast and a seasonal decline in the Southeast and West. At a smaller scale, insect biomass at different traps operating on the same days was correlated up to ~75 km apart. Large-scale geographic and phenological variation in insect biomass and abundance has not been studied well, and it is a major source of controversy in previous analyses of insect declines that have aggregated studies from different locations and time periods. Our study illustrates that large-scale predictions about changes in insect populations, and their causes, will need to incorporate regional and taxonomic differences in the response to temperature.
Assuntos
Insetos , Lepidópteros , Animais , Temperatura , Insetos/fisiologia , Ecossistema , AclimataçãoRESUMO
We present a combined experimental and quantum chemical study of gas-phase group 9 metal nitrosyl complexes, M(NO)n+ (M = Co, Rh, Ir). Experimental infrared photodissociation spectra of mass-selected ion-molecule complexes are presented in the region 1600 cm-1 to 2000 cm-1 which includes the NO stretch. These are interpreted by comparison with the simulated spectra of energetically low-lying structures calculated using density functional theory. A mix of linear and nonlinear ligand binding is observed, often within the same complex, and clear evidence of coordination shell closing is observed at n = 4 for Co(NO)n+ and Ir(NO)n+. Calculations of Rh(NO)n+ complexes suggest additional low-lying five-coordinate structures. In all cases, once a second coordination shell is occupied, new spectral features appear which are assigned to (NO)2 dimer moieties. Further evidence of such motifs comes from differences in the spectra recorded in the dissociation channels corresponding to single and double ligand loss.
RESUMO
We report a combined experimental and computational study of carbon dioxide activation at gas-phase Ho+ and HoO+ centres. Infrared action spectra of Ho(CO2)n+ and [HoO(CO2)n]+ ion-molecule complexes have been recorded in the spectral region 1700-2400 cm-1 and assigned by comparison with simulated spectra of energetically low-lying structures determined by density functional theory. Little by way of activation is observed in Ho(CO2)n+ complexes with CO2 binding end-on to the Ho+ ion. By contrast, all [HoO(CO2)n]+ complexes n ≥ 3 show unambiguous evidence for formation of a carbonate radical anion moiety, . The signature of this structure, a new vibrational band observed around 1840 cm-1 for n = 3, continues to red-shift monotonically with each successive CO2 ligand binding with net charge transfer from the ligand rather than the metal centre.
RESUMO
For many avian species, spatial migration patterns remain largely undescribed, especially across hemispheric extents. Recent advancements in tracking technologies and high-resolution species distribution models (i.e., eBird Status and Trends products) provide new insights into migratory bird movements and offer a promising opportunity for integrating independent data sources to describe avian migration. Here, we present a three-stage modeling framework for estimating spatial patterns of avian migration. First, we integrate tracking and band re-encounter data to quantify migratory connectivity, defined as the relative proportions of individuals migrating between breeding and nonbreeding regions. Next, we use estimated connectivity proportions along with eBird occurrence probabilities to produce probabilistic least-cost path (LCP) indices. In a final step, we use generalized additive mixed models (GAMMs) both to evaluate the ability of LCP indices to accurately predict (i.e., as a covariate) observed locations derived from tracking and band re-encounter data sets versus pseudo-absence locations during migratory periods and to create a fully integrated (i.e., eBird occurrence, LCP, and tracking/band re-encounter data) spatial prediction index for mapping species-specific seasonal migrations. To illustrate this approach, we apply this framework to describe seasonal migrations of 12 bird species across the Western Hemisphere during pre- and postbreeding migratory periods (i.e., spring and fall, respectively). We found that including LCP indices with eBird occurrence in GAMMs generally improved the ability to accurately predict observed migratory locations compared to models with eBird occurrence alone. Using three performance metrics, the eBird + LCP model demonstrated equivalent or superior fit relative to the eBird-only model for 22 of 24 species-season GAMMs. In particular, the integrated index filled in spatial gaps for species with over-water movements and those that migrated over land where there were few eBird sightings and, thus, low predictive ability of eBird occurrence probabilities (e.g., Amazonian rainforest in South America). This methodology of combining individual-based seasonal movement data with temporally dynamic species distribution models provides a comprehensive approach to integrating multiple data types to describe broad-scale spatial patterns of animal movement. Further development and customization of this approach will continue to advance knowledge about the full annual cycle and conservation of migratory birds.
Assuntos
Migração Animal , Aves , Animais , Estações do Ano , América do SulRESUMO
We report a combined experimental and computational study of the structure and fragmentation dynamics of mixed ligand gas-phase ion-molecule complexes. Specifically, we have studied the infrared spectroscopy and vibrationally induced photofragmentation dynamics of mass-selected Au(CO)x(N2O)y+ complexes. The structures can be understood on the basis of local CO and N2O chromophores in different solvation shells with CO found preferentially in the core. Rich fragmentation dynamics are observed as a function of complex composition and the vibrational mode excited. The dynamics are characterized in terms of branching ratios for different ligand loss channels in light of calculated internal energy distributions. Intramolecular vibrational redistribution appears to be rapid, and dissociation is observed into all energetically accessible channels with little or no evidence for preferential breaking of the weakest intermolecular interactions.
RESUMO
We report an intense broadband midinfrared absorption band in the Au_{10}^{+} cluster in a region in which only molecular vibrations would normally be expected. Observed in the infrared multiple photon dissociation spectra of Au_{10}Ar^{+}, Au_{10}(N_{2}O)^{+}, and Au_{10}(OCS)^{+}, the smooth feature stretches 700-3400 cm^{-1} (λ=14-2.9 µm). Calculations confirm unusually low-energy allowed electronic excitations consistent with the observed spectra. In Au_{10}(OCS)^{+}, IR absorption throughout the band drives OCS decomposition resulting in CO loss, providing an alternative method of bond activation or breaking.
RESUMO
Night-migratory songbirds are remarkably proficient navigators1. Flying alone and often over great distances, they use various directional cues including, crucially, a light-dependent magnetic compass2,3. The mechanism of this compass has been suggested to rely on the quantum spin dynamics of photoinduced radical pairs in cryptochrome flavoproteins located in the retinas of the birds4-7. Here we show that the photochemistry of cryptochrome 4 (CRY4) from the night-migratory European robin (Erithacus rubecula) is magnetically sensitive in vitro, and more so than CRY4 from two non-migratory bird species, chicken (Gallus gallus) and pigeon (Columba livia). Site-specific mutations of ErCRY4 reveal the roles of four successive flavin-tryptophan radical pairs in generating magnetic field effects and in stabilizing potential signalling states in a way that could enable sensing and signalling functions to be independently optimized in night-migratory birds.
Assuntos
Migração Animal , Criptocromos/genética , Campos Magnéticos , Aves Canoras , Animais , Proteínas Aviárias/genética , Galinhas , Columbidae , RetinaRESUMO
A new giant sauropod, Australotitan cooperensis gen. et sp. nov., represents the first record of dinosaurs from the southern-central Winton Formation of the Eromanga Basin, Australia. We estimate the type locality to be 270-300 m from the base of the Winton Formation and compare this to the semi-contemporaneous sauropod taxa, Diamantinasaurus matildae Hocknull et al., 2009, Wintonotitan wattsi Hocknull et al., 2009 and Savannasaurus elliottorum Poropat et al., 2016. The new titanosaurian is the largest dinosaur from Australia as represented by osteological remains and based on limb-size comparisons it reached a size similar to that of the giant titanosaurians from South America. Using 3-D surface scan models we compare features of the appendicular skeleton that differentiate Australotitan cooperensis gen. et sp. nov. as a new taxon. A key limitation to the study of sauropods is the inability to easily and directly compare specimens. Therefore, 3-D cybertypes have become a more standard way to undertake direct comparative assessments. Uncoloured, low resolution, and uncharacterized 3-D surface models can lead to misinterpretations, in particular identification of pre-, syn- and post-depositional distortion. We propose a method for identifying, documenting and illustrating these distortions directly onto the 3-D geometric surface of the models using a colour reference scheme. This new method is repeatable for researchers when observing and documenting specimens including taphonomic alterations and geometric differences. A detailed comparative and preliminary computational phylogenetic assessment supports a shared ancestry for all four Winton Formation taxa, albeit with limited statistical support. Palaeobiogeographical interpretations from these resultant phylogenetic hypotheses remain equivocal due to contrary Asian and South American relationships with the Australian taxa. Temporal and palaeoenvironmental differences between the northern and southern-central sauropod locations are considered to explain the taxonomic and morphological diversity of sauropods from the Winton Formation. Interpretations for this diversity are explored, including an eco-morphocline and/or chronocline across newly developed terrestrial environments as the basin fills.