Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(5)2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36899926

RESUMO

Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells with suppressive activity well described in the context of cancer. They inhibit anti-tumour immunity, promote metastasis formation and can lead to immune therapy resistance. In a retrospective study, blood probes of 46 advanced melanoma patients were analysed before the first administration of anti-PD-1 immunotherapy and in the third month of treatment for MDSC, immature monocytic (ImMC), monocytic MDSC (MoMDSC) and granulocytic MDSC (GrMDSC) by multi-channel flow cytometry. Cell frequencies were correlated with response to immunotherapy, progression-free survival (PFS) and lactate dehydrogenase (LDH) serum level. Responders to anti-PD-1 therapy had higher MoMDSC levels (4.1 ± 1.2%) compared to non-responders (3.0 ± 1.2%) (p = 0.0333) before the first administration of anti-PD-1. No significant changes in MDSCs frequencies were observed in the groups of patients before and in the third month of therapy. The cut-off values of MDSCs, MoMDSCs, GrMDSCs and ImMCs for favourable 2- and 3-year PFS were established. Elevated LDH level is a negative prognostic factor of response to the treatment and is related to an elevated ratio of GrMDSCs and ImMCs level compared to patients' LDH level below the cut-off. Our data may provide a new perspective for more careful consideration of MDSCs, and specially MoMDSCs, as a tool for monitoring the immune status of melanoma patients. Changes in MDSC levels may have a potential prognostic value, however a correlation with other parameters must be established.


Assuntos
Melanoma , Células Supressoras Mieloides , Humanos , Imunoterapia , Melanoma/patologia , Células Mieloides , Células Supressoras Mieloides/patologia , Estudos Retrospectivos
2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674511

RESUMO

Epigenetic mechanisms involving DNA methylation and chromatin modifications have emerged as critical facilitators of cancer heterogeneity, substantially affecting cancer development and progression, modulating cell phenotypes, and enhancing or inhibiting cancer cell malignant properties. Not surprisingly, considering the importance of epigenetic regulators in normal stem cell maintenance, many chromatin-related proteins are essential to maintaining the cancer stem cell (CSC)-like state. With increased tumor-initiating capacities and self-renewal potential, CSCs promote tumor growth, provide therapy resistance, spread tumors, and facilitate tumor relapse after treatment. In this review, we characterized the epigenetic mechanisms that regulate the acquisition and maintenance of cancer stemness concerning selected epigenetic factors belonging to the Bromodomain (BrD) family of proteins. An increasing number of BrD proteins reinforce cancer stemness, supporting the maintenance of the cancer stem cell population in vitro and in vivo via the utilization of distinct mechanisms. As bromodomain possesses high druggable potential, specific BrD proteins might become novel therapeutic targets in cancers exhibiting de-differentiated tumor characteristics.


Assuntos
Neoplasias , Humanos , Neoplasias/metabolismo , Metilação de DNA , Epigênese Genética , Cromatina/metabolismo , Células-Tronco Neoplásicas/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36361869

RESUMO

Genetic and epigenetic changes might facilitate the acquisition of stem cell-like phenotypes of tumors, resulting in worse patients outcome. Although the role of chromobox (CBX) domain proteins, a family of epigenetic factors that recognize specific histone marks, in the pathogenesis of several tumor types is well documented, little is known about their association with cancer stemness. Here, we have characterized the relationship between the CBX family members' expression and cancer stemness in liver, lung, pancreatic, and uterine tumors using publicly available TCGA and GEO databases and harnessing several bioinformatic tools (i.e., Oncomine, GEPIA2, TISIDB, GSCA, UALCAN, R2 platform, Enrichr, GSEA). We demonstrated that significant upregulation of CBX3 and downregulation of CBX7 are consistently associated with enriched cancer stem-cell-like phenotype across distinct tumor types. High CBX3 expression is observed in higher-grade tumors that exhibit stem cell-like traits, and CBX3-associated gene expression profiles are robustly enriched with stemness markers and targets for c-Myc transcription factor regardless of the tumor type. Similar to high-stemness tumors, CBX3-overexpressing cancers manifest a higher mutation load. On the other hand, higher-grade tumors are characterized by the significant downregulation of CBX7, and CBX7-associated gene expression profiles are significantly depleted with stem cell markers. In contrast to high-stemness tumors, cancer with CBX7 upregulation exhibit a lower mutation burden. Our results clearly demonstrate yet unrecognized association of high CBX3 and low CBX7 expression with cancer stem cell-like phenotype of solid tumors.


Assuntos
Neoplasias , Transcriptoma , Humanos , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo
4.
Int J Cancer ; 150(11): 1838-1849, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35049055

RESUMO

Cancer stemness, which covers the stem cell-like molecular traits of cancer cells, is essential for tumor development, progression and relapse. Both transcriptional and epigenetic aberrations are essentially connected with cancer stemness. The engagement of bromodomain (BrD) proteins-a family of epigenetic factors-has been presented in the pathogenesis of several tumor types, although their association with cancer stemness remains largely unknown. Here, we harnessed TCGA and GEO databases and used several bioinformatic tools (ie, Oncomine, PrognoScan, GEPIA2, TIMER2.0, TISIDB, GSEA, R2 platform) to characterize the association between the BrD family members' expression and cancer stemness in solid tumors. Our results demonstrate that significant upregulation of ATAD2 and SMARCA4, and downregulation of SMARCA2 is consistently associated with enriched cancer stem cell-like phenotype, respectively. Especially, higher-grade tumors that display stem cell-like properties overexpress ATAD2. In contrast to most BrD members, the gene expression profiles of ATAD2HIGH expressing tumors are strongly enriched with known markers of stem cells and with specific targets for c-Myc transcription factor. For other BrD proteins, the association with cancer de-differentiation status is rather tumor-specific. Our results demonstrate for the first time the relation between distinct BrD family proteins and cancer stemness across 27 solid tumor types. Specifically, our approach allowed us to discover a robust association of high ATAD2 expression with cancer stemness and reveal its' versatility in tumors. As bromodomains are attractive targets from a chemical and structural perspective, we propose ATAD2 as a novel druggable target for de-differentiated tumors, especially those overexpressing MYC.


Assuntos
Neoplasias , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/genética , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
5.
Int J Mol Sci ; 24(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614001

RESUMO

Cells and immune cells in the extracellular matrix: Depending on the tumor type and variety of TAAs (tumor-associated antigens), immune infiltrates are composed of many different subpopulations of immune cells. Epigenetic changes are also considered to be characteristic of cancer. Epigenetic factors taking part in the regulation of gene expression include the VII group of bromodomain proteins (BrD)-SP-family proteins. Here, we used transcriptomic data from the TCGA database, as well as immunological evidence from ESTIMATE, TIP, and TIMER2.0 databases for various solid tumor types and harnessed several publicly available bioinformatic tools (such as GSEA and GSCA) to demonstrate mechanisms and interactions between BrD proteins and immune infiltrates in cancer. We present a consistently positive correlation between the SP-family genes and immune score regardless of the tumor type. The SP-family proteins correlate positively with T cells' trafficking and infiltration into tumor. Our results also show an association between the high expression of SP family genes and enriched transcriptome profiles of inflammatory response and TNF-α signaling via NF-κß. We also show that the SP-family proteins could be considered good predictors of high immune infiltration phenotypes.


Assuntos
Neoplasias , Proteínas , Humanos , Proteínas/genética , Neoplasias/genética , Imunidade , Perfilação da Expressão Gênica , Transcriptoma
6.
Cancers (Basel) ; 13(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34638319

RESUMO

Krüppel-associated box zinc finger (KRAB-ZNF) proteins are known to regulate diverse biological processes, such as embryonic development, tissue-specific gene expression, and cancer progression. However, their involvement in the regulation of cancer stemness-like phenotype acquisition and maintenance is scarcely explored across solid tumor types, and to date, there are no data for kidney renal clear cell cancer (KIRC). We have harnessed The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database transcriptomic data and used several bioinformatic tools (i.e., GEPIA2, GSCALite, TISIDB, GSEA, CIBERSORT) to verify the relation between the expression and genomic alterations in KRAB-ZNFs and kidney cancer, focusing primarily on tumor dedifferentiation status and antitumor immune response. Our results demonstrate a significant negative correlation between KRAB-ZNFs and kidney cancer dedifferentiation status followed by an attenuated immune-suppressive response. The transcriptomic profiles of high KRAB-ZNF-expressing kidney tumors are significantly enriched with stem cell markers and show a depletion of several inflammatory pathways known for favoring cancer stemness. Moreover, we show for the first time the prognostic role for several KRAB-ZNFs in kidney cancer. Our results provide new insight into the role of selected KRAB-ZNF proteins in kidney cancer development. We believe that our findings may help better understand the molecular basis of KIRC.

7.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810347

RESUMO

Cancer progression entails a gradual loss of a differentiated phenotype in parallel with the acquisition of stem cell-like features. Cancer de-differentiation and the acquisition of stemness features are mediated by the transcriptional and epigenetic dysregulation of cancer cells. Here, using publicly available data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and harnessing several bioinformatic tools, we characterized the association between Transcriptional Intermediary Factor 1 (TIF1) family members and cancer stemness in 27 distinct types of solid tumors. We aimed to define the prognostic value for TIF1 members in predicting a stem cell-like cancer phenotype and patient outcome. Our results demonstrate that high expression of only one member of the TIF1 family, namely TIF1ß (also known as Tripartite Motif protein 28, TRIM28) is consequently associated with enriched cancer stemness across the tested solid tumor types, resulting in a worse prognosis for cancer patients. TRIM28 is highly expressed in higher grade tumors that exhibit stem cell-like traits. In contrast to other TIF1 members, only TIF1ß/TRIM28-associated gene expression profiles were robustly enriched with stemness markers regardless of the tumor type. Our work demonstrates that TIF1 family members exhibit distinct expression patterns in stem cell-like tumors, despite their structural and functional similarity. Among other TIF1 members, only TRIM28 might serve as a marker of cancer stemness features.

8.
Cancers (Basel) ; 12(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076560

RESUMO

TRIM28 emerged as a guard of the intrinsic "state of cell differentiation", facilitating self-renewal of pluripotent stem cells. Recent reports imply TRIM28 engagement in cancer stem cell (CSC) maintenance, although the exact mechanism remains unresolved. TRIM28 high expression is associated with worse melanoma patient outcomes. Here, we investigated the association between TRIM28 level and melanoma stemness, and aligned it with the antitumor immune response to find the mechanism of "stemness high/immune low" melanoma phenotype acquisition. Based on the SKCM TCGA data, the TRIM28 expression profile, clinicopathological features, expression of correlated genes, and the level of stemness and immune scores were analyzed in patient samples. The biological function for differentially expressed genes was annotated with GSEA. Results were validated with additional datasets from R2: Genomics Analysis and Visualization Platform and in vitro with a panel of seven melanoma cell lines. All statistical analyses were accomplished using GraphPad Prism 8. TRIM28HIGH-expressing melanoma patients are characterized by worse outcomes and significantly different gene expression profiles than the TRIM28NORM cohort. TRIM28 high level related to higher melanoma stemness as measured with several distinct scores and TRIM28HIGH-expressing melanoma cell lines possess the greater potential of melanosphere formation. Moreover, TRIM28HIGH melanoma tumors were significantly depleted with infiltrating immune cells, especially cytotoxic T cells, helper T cells, and B cells. Furthermore, TRIM28 emerged as a good predictor of "stemness high/immune low" melanoma phenotype. Our data indicate that TRIM28 might facilitate this phenotype by direct repression of interferon signaling. TRIM28 emerged as a direct link between stem cell-like phenotype and attenuated antitumor immune response in melanoma, although further studies are needed to evaluate the direct mechanism of TRIM28-mediated stem-like phenotype acquisition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA