Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39273187

RESUMO

The Plasmodium falciparum mitochondrial electron transport chain (mETC) is responsible for essential metabolic pathways such as de novo pyrimidine synthesis and ATP synthesis. The mETC complex III (cytochrome bc1 complex) is responsible for transferring electrons from ubiquinol to cytochrome c and generating a proton gradient across the inner mitochondrial membrane, which is necessary for the function of ATP synthase. Recent studies have revealed that the composition of Plasmodium falciparum complex III (PfCIII) is divergent from humans, highlighting its suitability as a target for specific inhibition. Indeed, PfCIII is the target of the clinically used anti-malarial atovaquone and of several inhibitors undergoing pre-clinical trials, yet its role in parasite biology has not been thoroughly studied. We provide evidence that the universally conserved subunit, PfRieske, and the new parasite subunit, PfC3AP2, are part of PfCIII, with the latter providing support for the prediction of its divergent composition. Using inducible depletion, we show that PfRieske, and therefore, PfCIII as a whole, is essential for asexual blood stage parasite survival, in line with previous observations. We further found that depletion of PfRieske results in gametocyte maturation defects. These phenotypes are linked to defects in mitochondrial functions upon PfRieske depletion, including increased sensitivity to mETC inhibitors in asexual stages and decreased cristae abundance alongside abnormal mitochondrial morphology in gametocytes. This is the first study that explores the direct role of the PfCIII in gametogenesis via genetic disruption, paving the way for a better understanding of the role of mETC in the complex life cycle of these important parasites and providing further support for the focus of antimalarial drug development on this pathway.


Assuntos
Antimaláricos , Atovaquona , Complexo III da Cadeia de Transporte de Elétrons , Malária Falciparum , Mitocôndrias , Plasmodium falciparum , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium falciparum/genética , Atovaquona/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Antimaláricos/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico , Humanos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Estágios do Ciclo de Vida/efeitos dos fármacos
2.
Res Sq ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39149452

RESUMO

Virus-induced accelerated aging has been proposed as a potential mechanism underlying the persistence of HIV-associated neurocognitive disorders (HAND) despite advances in access and adherence to combination antiretroviral therapies (cART). While some studies have demonstrated evidence of accelerated aging in PLWH, studies examining acute infection, and cART intervention are limited, with most studies being in vitro or utilizing small animal models. Here, we utilized FFPE tissues from Simian immunodeficiency virus (SIV) infected rhesus macaques to assess the levels of two proteins commonly associated with aging - the cellular senescence marker p16INK4a (p16) and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Our central hypothesis was that SIV infection induces accelerated aging phenotypes in the brain characterized by increased expression of p16 and altered expression of SIRT1 that correlate with increased neurodegeneration, and that cART inhibits this process. We found that SIV infection induced increased GFAP, p16, SIRT1, and neurodegeneration in multiple brain regions, and treatment with cART reduced GFAP expression in SIV-infected animals and thus likely decreases inflammation in the brain. Importantly, cART reversed SIV-induced accelerated aging (p16 and SIRT1) and neurodegeneration in the frontal lobe and hippocampus. Combined, these data suggest that cART is both safe and effective in reducing neuroinflammation and age-associated alterations in astrocytes that contribute to neurodegeneration, providing possible therapeutic targets in the treatment of HAND.

3.
mBio ; : e0087224, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39207139

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous inorganic cofactors required for numerous essential cellular pathways. Since they cannot be scavenged from the environment, Fe-S clusters are synthesized de novo in cellular compartments such as the apicoplast, mitochondrion, and cytosol. The cytosolic Fe-S cluster biosynthesis pathway relies on the transport of an intermediate from the mitochondrial pathway. An ATP-binding cassette (ABC) transporter called ABCB7 is responsible for this role in numerous commonly studied organisms, but its role in the medically important apicomplexan parasites has not yet been studied. Here we identify and characterize a Toxoplasma gondii ABCB7 homolog, which we name ABCB7-like (ABCB7L). Genetic depletion shows that it is essential for parasite growth and that its disruption triggers partial stage conversion. Characterization of the knock-down line highlights a defect in the biogenesis of cytosolic and nuclear Fe-S proteins leading to defects in protein translation and other pathways including DNA and RNA replication and metabolism. Our work provides support for a broad conservation of the connection between mitochondrial and cytosolic pathways in Fe-S cluster biosynthesis and reveals its importance for parasite survival. IMPORTANCE: Iron-sulfur (Fe-S) clusters are inorganic cofactors of proteins that play key roles in numerous essential biological processes, for example, respiration and DNA replication. Cells possess dedicated biosynthetic pathways to assemble Fe-S clusters, including a pathway in the mitochondrion and cytosol. A single transporter, called ABCB7, connects these two pathways, allowing an essential intermediate generated by the mitochondrial pathway to be used in the cytosolic pathway. Cytosolic and nuclear Fe-S proteins are dependent on the mitochondrial pathway, mediated by ABCB7, in numerous organisms studied to date. Here, we study the role of a homolog of ABCB7, which we name ABCB7-like (ABCB7L), in the ubiquitous unicellular apicomplexan parasite Toxoplasma gondii. We generated a depletion mutant of Toxoplasma ABCB7L and showed its importance for parasite fitness. Using comparative quantitative proteomic analysis and experimental validation of the mutants, we show that ABCB7L is required for cytosolic and nuclear, but not mitochondrial, Fe-S protein biogenesis. Our study supports the conservation of a protein homologous to ABCB7 and which has a similar function in apicomplexan parasites and provides insight into an understudied aspect of parasite metabolism.

4.
Can Med Educ J ; 15(2): 65-77, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38827919

RESUMO

Introduction: Considering the relevant 2015 Truth and Reconciliation Commission recommendations, this paper reviews the current state of Canadian medical schools' Indigenous admissions processes and explores continued barriers faced by Indigenous applicants. Methods: A summary of literature illustrating disadvantages for Indigenous applicants of current admissions tools is presented. A grey literature search of current admissions requirements, interview processes, and other relevant data from each medical school was performed. Tables comparing differences in their approaches are included. A calculation of Indigenous access to medical school seats compared to the broader Canadian population was conducted. Gaps in execution are explored, culminating in a table of recommendations. Results: Despite formal commitments to reduce barriers, Indigenous applicants to medical school in Canada still face barriers that non-Indigenous applicants do not. Most programs use tools for admission known to disadvantage Indigenous applicants. Indigenous applicants do not have equitable access to medical school seats. Facilitated Indigenous stream processes first ensure Indigenous applicants meet all minimum requirements of Canadian students, and then require further work. Discussion: Seven years after the Truth and Reconciliation Commission called on Canadian universities and governments to train more Indigenous health care providers, there has been limited progress to reduce the structural disadvantages Indigenous students face when applying to medical school. Based on best practices observed in Canada and coupled with relevant Indigenous-focused literature, recommendations are made for multiple stakeholders. Conclusions: The study was limited by the data available on numbers of Indigenous applicants and matriculants. Where available, data are not encouraging as to equitable access to medical school for Indigenous populations in Canada. These findings were presented at the International Congress of Academic Medicine 2023 Conference, April 2023, Quebec City, Canada.


Introduction: Compte tenu des recommandations pertinentes de la Commission de vérité et réconciliation de 2015, cet article examine l'état actuel des processus d'admission des Autochtones dans les facultés de médecine canadiennes et explore les obstacles persistants auxquels sont confrontés les candidats autochtones. Méthodes: Un résumé de la littérature illustrant les désavantages des outils d'admission actuels pour les candidats autochtones est présenté. Une recherche de la littérature grise a été effectuée sur les exigences d'admission actuelles, les processus d'entrevue et d'autres données pertinentes de chaque faculté de médecine. Des tableaux comparant les différences entre leurs approches sont inclus. Un calcul de l'accès des Autochtones aux places dans les facultés de médecine par rapport à l'ensemble de la population canadienne a été effectué. Les lacunes dans l'exécution sont explorées, aboutissant à un tableau de recommandations. Résultats: Malgré les engagements officiels visant à réduire les obstacles, les candidats autochtones qui appliquent aux facultés de médecine canadiennes se heurtent encore à des obstacles auxquels les candidats non autochtones ne sont pas confrontés. La plupart des programmes utilisent des outils d'admission connus pour désavantager les candidats autochtones. Les candidats autochtones n'ont pas un accès équitable aux places dans les facultés de médecine. Des processus d'accès facilités pour les autochtones permettent d'abord de s'assurer que les candidats autochtones satisfont à toutes les exigences minimales des étudiants canadiens, puis nécessitent d'autres travaux. Discussion: Sept ans après que la Commission de vérité et réconciliation ait demandé aux universités et aux gouvernements canadiens de former davantage de prestataires de soins en santé autochtone, les progrès réalisés pour réduire les désavantages structurels auxquels les étudiants autochtones sont confrontés lorsqu'ils posent leur candidature à une faculté de médecine sont limités. Sur la base des meilleures pratiques observées au Canada et de la littérature autochtone pertinente, des recommandations sont formulées à l'intention de multiples parties prenantes. Conclusions: L'étude est limitée par les données disponibles sur le nombre de candidats et d'étudiants autochtones. Lorsqu'elles sont disponibles, les données ne sont pas encourageantes en ce qui concerne l'accès équitable aux études de médecine pour les populations autochtones au Canada. Ces conclusions ont été présentées lors de l'édition 2023 du Congrès international de médecine universitaire (CIMU) qui s'est déroulé en avril 2023 dans la ville de Québec, au Canada.


Assuntos
Critérios de Admissão Escolar , Faculdades de Medicina , Canadá , Humanos , Faculdades de Medicina/estatística & dados numéricos , Canadenses Indígenas
5.
Front Aging Neurosci ; 16: 1368517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577492

RESUMO

Introduction: As the population over the age of 65 increases, rates of neurodegenerative disorders and dementias will rise - necessitating further research into the cellular and molecular mechanisms that contribute to brain aging. With the critical importance of astrocytes to neuronal health and functioning, we hypothesized that alterations in astrocyte expression of aging-associated markers p16INK4a (p16) and sirtuin 1 (SIRT1) with age would correlate with increased rates of neurodegeneration, as measured by FluoroJade C (FJC) staining. Methods: To test this hypothesis, 19 rhesus macaques at the Tulane National Primate Research Center were selected based on the following criteria: archival FFPE CNS tissue available to use, no noted neuropathology, and an age range of 5-30 years. Tissues were cut at 5 µm and stained for GFAP, p16, SIRT1, and FJC, followed by whole-slide imaging and HALO® image analysis for percentage of marker-positive cells and relative intensity of each stain. Results: We found the percentage of p16+ cells increases with age in total cells and astrocytes of the frontal (p = 0.0021, p = 0.0012 respectively) and temporal (p = 0.0226, p = 0.0203 respectively) lobes, as well as the relative intensity of p16 staining (frontal lobe: p = 0.0060; temporal lobe: p = 0.0269). For SIRT1, we found no correlation with age except for an increase in the relative intensity of SIRT1 in the temporal lobe (p = 0.0033). There was an increase in neurodegeneration, as measured by the percentage of FJC+ cells in the frontal lobe with age (p = 0.0057), as well as in the relative intensity of FJC staining in the frontal (p = 0.0030) and parietal (p = 0.0481) lobes. Importantly, increased p16 and SIRT1 expression in astrocytes correlated with increasing neurodegeneration in the frontal lobe (p = 0.0009, p = 0.0095 respectively). Discussion: Together, these data suggest that age-associated alterations in astrocytes contribute to neurodegeneration and provide a target for mechanistic studies in the future.

6.
J Exp Med ; 221(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38661717

RESUMO

During secondary infection with influenza virus, plasma cells (PCs) develop within the lung, providing a local source of antibodies. However, the site and mechanisms that regulate this process are poorly defined. Here, we show that while circulating memory B cells entered the lung during rechallenge and were activated within inducible bronchus-associated lymphoid tissues (iBALTs), resident memory B (BRM) cells responded earlier, and their activation occurred in a different niche: directly near infected alveoli. This process required NK cells but was largely independent of CD4 and CD8 T cells. Innate stimuli induced by virus-like particles containing ssRNA triggered BRM cell differentiation in the absence of cognate antigen, suggesting a low threshold of activation. In contrast, expansion of PCs in iBALTs took longer to develop and was critically dependent on CD4 T cells. Our work demonstrates that spatially distinct mechanisms evolved to support pulmonary secondary PC responses, and it reveals a specialized function for BRM cells as guardians of the alveoli.


Assuntos
Linfócitos T CD4-Positivos , Pulmão , Infecções por Orthomyxoviridae , Plasmócitos , Animais , Plasmócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Camundongos , Linfócitos T CD4-Positivos/imunologia , Camundongos Endogâmicos C57BL , Células Matadoras Naturais/imunologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Células B de Memória/imunologia , Ativação Linfocitária/imunologia , Orthomyxoviridae/imunologia , Orthomyxoviridae/fisiologia
7.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38456969

RESUMO

Coordination between nucleus and mitochondria is essential for cell survival, and thus numerous communication routes have been established between these two organelles over eukaryotic cell evolution. One route for organelle communication is via membrane contact sites, functional appositions formed by molecular tethers. We describe a novel nuclear-mitochondrial membrane contact site in the protozoan Toxoplasma gondii. We have identified specific contacts occurring at the nuclear pore and demonstrated an interaction between components of the nuclear pore and the mitochondrial protein translocon, highlighting them as molecular tethers. Genetic disruption of the nuclear pore or the TOM translocon components, TgNup503 or TgTom40, respectively, result in contact site reduction, supporting their potential involvement in this tether. TgNup503 depletion further leads to specific mitochondrial morphology and functional defects, supporting a role for nuclear-mitochondrial contacts in mediating their communication. The discovery of a contact formed through interaction between two ancient mitochondrial and nuclear complexes sets the ground for better understanding of mitochondrial-nuclear crosstalk in eukaryotes.


Assuntos
Núcleo Celular , Mitocôndrias , Toxoplasma , Células Eucarióticas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Associadas à Mitocôndria , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Toxoplasma/citologia , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Protozoários/metabolismo
9.
J Exp Med ; 221(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938344

RESUMO

Protective immune responses to many pathogens depend on the development of high-affinity antibody-producing plasma cells (PC) in germinal centers (GCs). Transgenic models suggest that there is a stringent affinity-based barrier to PC development. Whether a similar high-affinity barrier regulates PC development under physiologic circumstances and the nature of the PC fate decision has not been defined precisely. Here, we use a fate-mapping approach to examine the relationship between GC B cells selected to undergo additional rounds of affinity maturation, GC pre-PC, and PC. The data show that initial PC selection overlaps with GC B cell selection, but that the PC compartment accumulates a less diverse and higher affinity collection of antibodies over time. Thus, whereas the GC continues to diversify over time, affinity-based pre-PC selection sieves the GC to enable the accumulation of a more restricted group of high-affinity antibody-secreting PC.


Assuntos
Centro Germinativo , Plasmócitos , Linfócitos B , Anticorpos , Células Produtoras de Anticorpos
10.
PLoS Pathog ; 19(12): e1011867, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38079448

RESUMO

The mitochondrial electron transport chain (mETC) is a series of membrane embedded enzymatic complexes critical for energy conversion and mitochondrial metabolism. In commonly studied eukaryotes, including humans and animals, complex II, also known as succinate dehydrogenase (SDH), is an essential four-subunit enzyme that acts as an entry point to the mETC, by harvesting electrons from the TCA cycle. Apicomplexa are pathogenic parasites with significant impact on human and animal health. The phylum includes Toxoplasma gondii which can cause fatal infections in immunocompromised people. Most apicomplexans, including Toxoplasma, rely on their mETC for survival, yet SDH remains largely understudied. Previous studies pointed to a divergent apicomplexan SDH with nine subunits proposed for the Toxoplasma complex, compared to four in humans. While two of the nine are homologs of the well-studied SDHA and B, the other seven have no homologs in SDHs of other systems. Moreover, SDHC and D, that anchor SDH to the membrane and participate in substrate bindings, have no homologs in Apicomplexa. Here, we validated five of the seven proposed subunits as bona fide SDH components and demonstrated their importance for SDH assembly and activity. We further find that all five subunits are important for parasite growth, and that disruption of SDH impairs mitochondrial respiration and results in spontaneous initiation of differentiation into bradyzoites. Finally, we provide evidence that the five subunits are membrane bound, consistent with their potential role in membrane anchoring, and we demonstrate that a DY motif in one of them, SDH10, is essential for complex formation and function. Our study confirms the divergent composition of Toxoplasma SDH compared to human, and starts exploring the role of the lineage-specific subunits in SDH function, paving the way for future mechanistic studies.


Assuntos
Succinato Desidrogenase , Toxoplasma , Animais , Humanos , Succinato Desidrogenase/genética , Toxoplasma/genética , Toxoplasma/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ciclo do Ácido Cítrico
11.
Nat Commun ; 14(1): 6944, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907454

RESUMO

Follicular helper T cells (TFH) mediate B cell selection and clonal expansion in germinal centers (GCs), and follicular regulatory T cells (TFR) prevent the emergence of self-reactive B cells and help to extinguish the reaction. Here we show that GC reactions continually recruit T cells from both the naïve conventional and naive thymic regulatory T cell (Treg) repertoires. In the early GC, newly recruited T cells develop into TFH, whereas cells entering during the contraction phase develop into TFR cells that contribute to GC dissolution. The TFR fate decision is associated with decreased antigen availability and is modulated by slow antigen delivery or mRNA vaccination. Thus, invasion of ongoing GCs by newly developing TFH and TFR helps remodel the GC based on antigen availability.


Assuntos
Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Centro Germinativo , Linfócitos B , Antígenos
12.
Nat Commun ; 14(1): 6727, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872155

RESUMO

Effective responses to intracellular pathogens are characterized by T cell clones with a broad affinity range for their cognate peptide and diverse functional phenotypes. How T cell clones are selected throughout the response to retain a breadth of avidities remains unclear. Here, we demonstrate that direct sensing of the cytokine IFN-γ by CD8+ T cells coordinates avidity and differentiation during infection. IFN-γ promotes the expansion of low-avidity T cells, allowing them to overcome the selective advantage of high-avidity T cells, whilst reinforcing high-avidity T cell entry into the memory pool, thus reducing the average avidity of the primary response and increasing that of the memory response. IFN-γ in this context is mainly provided by virtual memory T cells, an antigen-inexperienced subset with memory features. Overall, we propose that IFN-γ and virtual memory T cells fulfil a critical immunoregulatory role by enabling the coordination of T cell avidity and fate.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Interferon gama/genética , Citocinas , Diferenciação Celular/genética , Peptídeos
13.
J Neurovirol ; 29(4): 389-399, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37635184

RESUMO

Human immunodeficiency virus (HIV), the main contributor of the ongoing AIDS epidemic, remains one of the most challenging and complex viruses to target and eradicate due to frequent genome mutation and immune evasion. Despite the development of potent antiretroviral therapies, HIV remains an incurable infection as the virus persists in latent reservoirs throughout the body. To innovate a safe and effective cure strategy for HIV in humans, animal models are needed to better understand viral proliferation, disease progression, and therapeutic response. Nonhuman primates infected with simian immunodeficiency virus (SIV) provide an ideal model to study HIV infection and pathogenesis as they are closely related to humans genetically and express phenotypically similar immune systems. Examining the clinical outcomes of novel treatment strategies within nonhuman primates facilitates our understanding of HIV latency and advances the development of a true cure to HIV.


Assuntos
Infecções por HIV , HIV , Animais , Infecções por HIV/tratamento farmacológico , Primatas , Progressão da Doença , Evasão da Resposta Imune
14.
Trends Parasitol ; 38(12): 1041-1052, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36302692

RESUMO

The mitochondrial respiratory chain is an essential pathway in most studied eukaryotes due to its roles in respiration and other pathways that depend on mitochondrial membrane potential. Apicomplexans are unicellular eukaryotes whose members have an impact on global health. The respiratory chain is a drug target for some members of this group, notably the malaria-causing Plasmodium spp. This has motivated studies of the respiratory chain in apicomplexan parasites, primarily Toxoplasma gondii and Plasmodium spp. for which experimental tools are most advanced. Studies of the respiratory complexes in these organisms revealed numerous novel features, including expansion of complex size. The divergence of apicomplexan mitochondria from commonly studied models highlights the diversity of mitochondrial form and function across eukaryotic life.


Assuntos
Apicomplexa , Malária , Plasmodium , Toxoplasma , Humanos , Transporte de Elétrons , Mitocôndrias/metabolismo , Plasmodium/metabolismo , Malária/parasitologia , Apicomplexa/metabolismo
15.
J Extracell Vesicles ; 11(3): e12191, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35234354

RESUMO

Extracellular vesicles (EVs) are secreted from all cell types and are intimately involved in tissue homeostasis. They are being explored as vaccine and gene therapy platforms, as well as potential biomarkers. As their size is below the diffraction limit of light microscopy, direct visualizations have been daunting and single-particle studies under physiological conditions have been hampered. Here, direct stochastic optical reconstruction microscopy (dSTORM) was employed to visualize EVs in three-dimensions and to localize molecule clusters such as the tetraspanins CD81 and CD9 on the surface of individual EVs. These studies demonstrate the existence of membrane microdomains on EVs. These were confirmed by Cryo-EM. Individual particle visualization provided insights into the heterogeneity, structure, and complexity of EVs not previously appreciated.


Assuntos
Vesículas Extracelulares , Transporte Biológico , Biomarcadores/análise , Vesículas Extracelulares/química , Microscopia , Tetraspaninas/análise
16.
Immunity ; 55(4): 718-733.e8, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35349789

RESUMO

Resident memory B (BRM) cells develop and persist in the lungs of influenza-infected mice and humans; however, their contribution to recall responses has not been defined. Here, we used two-photon microscopy to visualize BRM cells within the lungs of influenza -virus immune and reinfected mice. Prior to re-exposure, BRM cells were sparsely scattered throughout the tissue, displaying limited motility. Within 24 h of rechallenge, these cells increased their migratory capacity, localized to infected sites, and subsequently differentiated into plasma cells. Alveolar macrophages mediated this process, in part by inducing expression of chemokines CXCL9 and CXCL10 from infiltrating inflammatory cells. This led to the recruitment of chemokine receptor CXCR3-expressing BRM cells to infected regions and increased local antibody concentrations. Our study uncovers spatiotemporal mechanisms that regulate lung BRM cell reactivation and demonstrates their capacity to rapidly deliver antibodies in a highly localized manner to sites of viral replication.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Animais , Anticorpos , Humanos , Memória Imunológica , Células B de Memória , Camundongos
17.
Plant Physiol ; 188(2): 997-1013, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34718778

RESUMO

Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Lipoilação/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
18.
Front Cell Neurosci ; 15: 695899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290592

RESUMO

Extracellular vesicles (EVs) are small, membrane-bound vesicles released by cells as a means of intercellular communication. EVs transfer proteins, nucleic acids, and other biologically relevant molecules from one cell to another. In the context of viral infections, EVs can also contain viruses, viral proteins, and viral nucleic acids. While there is some evidence that the inclusion of viral components within EVs may be part of the host defense, much of the research in this field supports a pro-viral role for EVs. Packaging of viruses within EVs has repeatedly been shown to protect viruses from antibody neutralization while also allowing for their integration into cells otherwise impervious to the virus. EVs also bidirectionally cross the blood-brain barrier (BBB), providing a potential route for peripheral viruses to enter the brain while exiting EVs may serve as valuable biomarkers of neurological disease burden. Within the brain, EVs can alter glial activity, increase neuroinflammation, and induce neurotoxicity. The purpose of this mini-review is to summarize research related to viral manipulation of EV-mediated intercellular communication and how such manipulation may lead to infection of the central nervous system, chronic neuroinflammation, and neurodegeneration.

19.
Plant Physiol ; 186(3): 1507-1525, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33856472

RESUMO

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Di-Hidrolipoamida Desidrogenase/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Di-Hidrolipoamida Desidrogenase/genética , Genes de Plantas , Variação Genética , Genótipo , Proteínas Ferro-Enxofre/genética
20.
PLoS Pathog ; 17(3): e1009301, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33651838

RESUMO

The mitochondrial electron transport chain (mETC) and F1Fo-ATP synthase are of central importance for energy and metabolism in eukaryotic cells. The Apicomplexa, important pathogens of humans causing diseases such as toxoplasmosis and malaria, depend on their mETC in every known stage of their complicated life cycles. Here, using a complexome profiling proteomic approach, we have characterised the Toxoplasma mETC complexes and F1Fo-ATP synthase. We identified and assigned 60 proteins to complexes II, IV and F1Fo-ATP synthase of Toxoplasma, of which 16 have not been identified previously. Notably, our complexome profile elucidates the composition of the Toxoplasma complex III, the target of clinically used drugs such as atovaquone. We identified two new homologous subunits and two new parasite-specific subunits, one of which is broadly conserved in myzozoans. We demonstrate all four proteins are essential for complex III stability and parasite growth, and show their depletion leads to decreased mitochondrial potential, supporting their assignment as complex III subunits. Our study highlights the divergent subunit composition of the apicomplexan mETC and F1Fo-ATP synthase complexes and sets the stage for future structural and drug discovery studies.


Assuntos
Transporte de Elétrons/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Toxoplasma/metabolismo , Animais , Humanos , Parasitos/metabolismo , Proteômica/métodos , Proteínas de Protozoários/metabolismo , Toxoplasmose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA