Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13629, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871761

RESUMO

This study examines how various nanofillers impact thermal conductivity, dielectric characteristics, and electromagnetic interference (EMI) shielding potential of bio-based and biodegradable poly(butylene succinate-co-adipate) (PBSA). TiO2, NiFe2O4, Fe2O3, and Fe3O4 were selected as fillers for nanocomposites at 4-50 vol.% (12-81 wt.%). The nanocomposites were analyzed in three domains: structural (scanning electron microscopy, energy dispersive X-ray spectroscopy mapping, density, tensile testing), thermal (light flash analysis, literature models), and dielectric (AC conductivity, permittivity, EM shielding effectiveness (SE)). The investigated fillers showed good dispersion and compatibility with the PBSA matrix. LFA was analyzed according to literature models, where Bruggeman and Agari models showed the best fit at high concentrations. The dielectric analysis revealed that most of the nanocomposites did not reach percolation; thus, producing thermally conductive plastics that are electrically insulating. EMI shielding was limited to frequencies below 10 Hz, with the notable exception of Fe3O4 (100 nm and loading of > 25 vol.%), which showed shielding at frequencies up to 105 Hz. The investigated composites based on a biodegradable polyester and abundant metal oxide nanofillers are suitable for the production of cheap, ecological, and electrically insulating heat dissipation solutions required for modern and lightweight applications.

2.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475287

RESUMO

This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2). The dielectric permittivity strongly increases with the nanoparticle concentration according to the Maxwell-Garnet model. Therefore, the investigated composites are suitable for various flexible electronic applications, particularly in the microwave and terahertz frequency ranges. Dielectric dispersion and increased attenuation of ultrasonic waves were observed at lower temperatures (below 280 K) due to the relaxation of polymer molecules at the PDMS/TiO2 interface and in the polymer matrix. The relaxation time followed the Vogel-Vulcher law, while the freezing temperature increased with the titanium dioxide concentration due to interactions between the polymer molecules and nanoparticles. The significant hysteresis in the ultrasonic properties indicated that titanium dioxide acts as a crystallization center. This is confirmed by the correlation between the hysteresis in the ultrasonic properties and the structure of the composites. The small difference in the activation energy values obtained from the ultrasonic and dielectric investigations is related to the fact that the dielectric dispersion is slightly broader than the Debye-type dielectric dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA