Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e24107, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226290

RESUMO

Perovskite photovoltaics have an immense contribution toward the all-round development of the solar cell. Apart from the flexibility, stability, and high efficiency, more stress has been given to using lead-free as well as eco-friendly, inexpensive materials in the fabrication of PSC devices. The utilization of non-volatile material, such as cesium tin iodide (CsSnI3), can be proposed for designing the PSC device, which not only makes it eco-friendly but also offers better optoelectronic characteristics due to its smaller bandgap of 1.27 eV. The inclusion of Sn in the perovskite material also functions as an increment in the stability of the perovskite. In the present simulation, CsSnI3 is used as an active absorber layer while the ZnMgO is used as an ETL for a cost-effective nature. Similarly, graphene oxide (GO) is used as HTL for a superior collection of holes. The comprehensive numerical modeling of the ZnMgO can be utilized in solar cell designing with appropriate CsSnI3 thickness, working temperature, total defectivity, and resistance impact, respectively. The presently simulated device offers an excellent efficiency of 17.37 % with CsSnI3-based PSC. These results of the study also show an effective route to develop highly efficient lead-free PSC devices.

2.
ChemistryOpen ; 13(2): e202300055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874015

RESUMO

This work mainly focuses on synthesizing and evaluating the efficiency of methylammonium lead halide-based perovskite (MAPbX3 ; X=Cl, Br, I) solar cells. We used the colloidal Hot-injection method (HIM) to synthesize MAPbX3 (X=Cl, Br, I) perovskites using the specific precursors and organic solvents under ambient conditions. We studied the structural, morphological and optical properties of MAPbX3 perovskites using XRD, FESEM, TEM, UV-Vis, PL and TRPL (time-resolved photoluminescence) characterization techniques. The particle size and morphology of these perovskites vary with respect to the halide variation. The MAPbI3 perovskite possesses a low band gap and low carrier lifetime but delivers the highest PCE among other halide perovskite samples, making it a promising candidate for solar cell technology. To further enrich the investigations, the conversion efficiency of the MAPbX3 perovskites has been evaluated through extensive device simulations. Here, the optical constants, band gap energy and carrier lifetime of MAPbX3 were used for simulating three different perovskite solar cells, namely I, Cl or Br halide-based perovskite solar cells. MAPbI3 , MAPbBr3 and MAPbCl3 absorber layer-based devices showed ~13.7 %, 6.9 % and 5.0 % conversion efficiency. The correlation between the experimental and SCAPS simulation data for HIM-synthesized MAPBX3 -based perovskites has been reported for the first time.

3.
RSC Adv ; 13(49): 34693-34702, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38035252

RESUMO

With increased efficiency, simplicity in manufacturing, adaptability, and flexibility, solar cells constructed from organic metal halide perovskite (PVK) have recently attained great eminence. Lead, a poisonous substance, present in a conventional PVK impacts the environment and prevents commercialization. To deal with this issue, a number of toxicity-free PVK-constructed solar cells have been suggested. Nevertheless, inherent losses mean the efficiency conversion accomplished from these devices is inadequate. Therefore, a thorough theoretical investigation is indispensable for comprehending the losses to improve efficiency. The findings of a unique modelling method for organic lead-free solar cells, namely methylammonium tin iodide (MASnI3), are investigated to reach the maximum practical efficiencies. The layer pertinent to MASnI3 was constructed as a sandwich between a bio-synthesized electron transport layer (ETL) of CeO2 and a hole transport layer (HTL) of CuCrO2 in the designed perovskite solar cells (PSCs). In this study, the use of algae-synthesized Au in the back contacts has been proposed. To obtain the maximum performance, the devices are further analyzed and optimized for active layer thickness, working temperature, total and interface defect density analysis, impedance analysis (Z'-Z), and capacitance-voltage (C-V), respectively. An optimal conversion efficiency of 26.60% has been attained for an MASnI3-constructed PSC. The study findings may open the door to a lead-free PSC through improved conversion efficiencies.

4.
RSC Adv ; 13(45): 31330-31345, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908652

RESUMO

Strontium antimony iodide (Sr3SbI3) is one of the emerging absorbers materials owing to its intriguing structural, electronic, and optical properties for efficient and cost-effective solar cell applications. A comprehensive investigation on the structural, optical, and electronic characterization of Sr3SbI3 and its subsequent applications in heterostructure solar cells have been studied theoretically. Initially, the optoelectronic parameters of the novel Sr3SbI3 absorber, and the possible electron transport layer (ETL) of tin sulfide (SnS2), zinc sulfide (ZnS), and indium sulfide (In2S3) including various interface layers were obtained by DFT study. Afterward, the photovoltaic (PV) performance of Sr3SbI3 absorber-based cell structures with SnS2, ZnS, and In2S3 as ETLs were systematically investigated at varying layer thickness, defect density bulk, doping density, interface density of active materials including working temperature, and thereby, optimized PV parameters were achieved using SCAPS-1D simulator. Additionally, the quantum efficiency (QE), current density-voltage (J-V), and generation and recombination rates of photocarriers were determined. The maximum power conversion efficiency (PCE) of 28.05% with JSC of 34.67 mA cm-2, FF of 87.31%, VOC of 0.93 V for SnS2 ETL was obtained with Al/FTO/SnS2/Sr3SbI3/Ni structure, while the PCE of 24.33%, and 18.40% in ZnS and In2S3 ETLs heterostructures, respectively. The findings of this study contribute to in-depth understanding of the physical, electronic, and optical properties of Sr3SbI3 absorber perovskite and SnS2, ZnS, and In2S3 ETLs. Additionally, it provides valuable insights into the potential of Sr3SbI3 in heterostructure perovskite solar cells (PSCs), paving the pathway for further experimental design of an efficient and stable PSC devices.

5.
RSC Adv ; 13(38): 26851-26860, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37692356

RESUMO

This research investigates the influence of halide-based methylammonium-based perovskites as the active absorber layer (PAL) in perovskite solar cells (PSCs). Using SCAPS-1D simulation software, the study optimizes PSC performance by analyzing PAL thickness, temperature, and defect density impact on output parameters. PAL thickness analysis reveals that increasing thickness enhances JSC for MAPbI3 and MAPbI2Br, while that of MAPbBr3 remains steady. VOC remains constant, and FF and PCE vary with thickness. MAPbI2Br exhibits the highest efficiency of 22.05% at 1.2 µm thickness. Temperature impact analysis shows JSC, VOC, FF, and PCE decrease with rising temperature. MAPbI2Br-based PSC achieves the highest efficiency of 22.05% at 300 K. Contour plots demonstrate that optimal PAL thickness for the MAPbI2Br-based PSC is 1.2 µm with a defect density of 1 × 1013 cm-3, resulting in a PCE of approximately 22.05%. Impedance analysis shows the MAPbBr3-based PSC has the highest impedance, followed by Cl2Br-based and I-based perovskite materials. A comparison of QE and J-V characteristics indicates MAPbI2Br offers the best combination of VOC and JSC, resulting in superior efficiency. Overall, this study enhances PSC performance with MAPbI2Br-based devices, achieving an improved power conversion efficiency of 22.05%. These findings contribute to developing more efficient perovskite solar cells using distinct halide-based perovskite materials.

6.
RSC Adv ; 13(34): 23514-23537, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37546214

RESUMO

Lead toxicity is a barrier to the widespread commercial manufacture of lead halide perovskites and their use in solar photovoltaic (PV) devices. Eco-friendly lead-free perovskite solar cells (PSCs) have been developed using certain unique non- or low-toxic perovskite materials. In this context, Sn-based perovskites have been identified as promising substitutes for Pb-based perovskites due to their similar characteristics. However, Sn-based perovskites suffer from chemical instability, which affects their performance in PSCs. This study employs theoretical simulations to identify ways to improve the efficiency of Sn-based PSCs. The simulations were conducted using the SCAPS-1D software, and a lead-free, non-toxic, and inorganic perovskite absorber layer (PAL), i.e. CsSnI3 was used in the PSC design. The properties of the hole transport layer (HTL) and electron transport layer (ETL) were tuned to optimize the performance of the device. Apart from this, seven different combinations of HTLs were studied, and the best-performing combination was found to be ITO/PCBM/CsSnI3/CFTS/Se, which achieved a power conversion efficiency (PCE) of 24.73%, an open-circuit voltage (VOC) of 0.872 V, a short-circuit current density (JSC) of 33.99 mA cm-2 and a fill factor (FF) of 83.46%. The second highest PCE of 18.41% was achieved by the ITO/PCBM/CsSnI3/CuSCN/Se structure. In addition to optimizing the structure of the PSC, this study also analyzes the current density-voltage (J-V) along with quantum efficiency (QE), as well as the impact of series resistance, shunt resistance, and working temperature, on PV performance. The results demonstrate the potential of the optimized structure identified in this study to enhance the standard PCE of PSCs. Overall, this study provides important insights into the development of lead-free absorber materials and highlights the potential of using CsSnI3 as the PAL in PSCs. The optimized structure identified in this study can be used as a base for further research to improve the efficiency of Sn-based PSCs.

7.
ACS Omega ; 8(25): 22466-22485, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396227

RESUMO

CsSnI3 is considered to be a viable alternative to lead (Pb)-based perovskite solar cells (PSCs) due to its suitable optoelectronic properties. The photovoltaic (PV) potential of CsSnI3 has not yet been fully explored due to its inherent difficulties in realizing defect-free device construction owing to the nonoptimized alignment of the electron transport layer (ETL), hole transport layer (HTL), efficient device architecture, and stability issues. In this work, initially, the structural, optical, and electronic properties of the CsSnI3 perovskite absorber layer were evaluated using the CASTEP program within the framework of the density functional theory (DFT) approach. The band structure analysis revealed that CsSnI3 is a direct band gap semiconductor with a band gap of 0.95 eV, whose band edges are dominated by Sn 5s/5p electrons After performing the DFT analysis, we investigated the PV performance of a variety of CsSnI3-based solar cell configurations utilizing a one-dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs such as IGZO, WS2, CeO2, TiO2, ZnO, PCBM, and C60. Simulation results revealed that the device architecture comprising ITO/ETL/CsSnI3/CuI/Au exhibited better photoconversion efficiency among more than 70 different configurations. The effect of the variation in the absorber, ETL, and HTL thickness on PV performance was analyzed for the above-mentioned configuration thoroughly. Additionally, the impact of series and shunt resistance, operating temperature, capacitance, Mott-Schottky, generation, and recombination rate on the six superior configurations were evaluated. The J-V characteristics and the quantum efficiency plots for these devices are systematically investigated for in-depth analysis. Consequently, this extensive simulation with validation results established the true potential of CsSnI3 absorber with suitable ETLs including ZnO, IGZO, WS2, PCBM, CeO2, and C60 ETLs and CuI as HTL, paving a constructive research path for the photovoltaic industry to fabricate cost-effective, high-efficiency, and nontoxic CsSnI3 PSCs.

8.
RSC Adv ; 13(30): 21044-21062, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448634

RESUMO

Perovskite solar cells (PSCs) have become a possible alternative to traditional photovoltaic devices for their high performance, low cost, and ease of fabrication. Here in this study, the SCAPS-1D simulator numerically simulates and optimizes CsPbBr3-based PSCs under the optimum illumination situation. We explore the impact of different back metal contacts (BMCs), including Cu, Ag, Fe, C, Au, W, Pt, Se, Ni, and Pd combined with the TiO2 electron transport layer (ETL) and CFTS hole transport layer (HTL), on the performance of the devices. After optimization, the ITO/TiO2/CsPbBr3/CFTS/Ni structure showed a maximum power conversion efficiency (PCE or η) of 13.86%, with Ni as a more cost-effective alternative to Au. After the optimization of the BMC the rest of the investigation is conducted both with and without HTL mode. We investigate the impact of changing the thickness and the comparison with acceptor and defect densities (with and without HTL) of the CsPbBr3 perovskite absorber layer on the PSC performance. Finally, we optimized the thickness, charge carrier densities, and defect densities of the absorber, ETL, and HTL, along with the interfacial defect densities at HTL/absorber and absorber/ETL interfaces to improve the PCE of the device; and the effect of variation of these parameters is also investigated both with and without HTL connected. The final optimized configuration achieved a VOC of 0.87 V, JSC of 27.57 mA cm-2, FF of 85.93%, and PCE of 20.73%. To further investigate the performance of the optimized device, we explore the impact of the temperature, shunt resistance, series resistance, capacitance, generation rate, recombination rate, Mott-Schottky, JV, and QE features of both with and without HTL connected. The optimized device offers the best thermal stability at a temperature of 300 K. Our study highlights the potential of CsPbBr3-based PSCs and provides valuable insights for their optimization and future development.

9.
Phys Chem Chem Phys ; 25(24): 16459-16468, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37306330

RESUMO

Enhanced radiative efficiency, long carrier lifetimes, and high carrier mobilities are hallmarks of perovskite solar cells. Considering this, complete cells experience large nonradiative recombination losses that restrict their VOC considerably below the Shockley-Queisser limit. Auger recombination, which involves two free photo-induced carriers and a trapped charge carrier, is one potential mechanism. Herein, the effects of Auger capture coefficients in mixed-cation perovskites are analyzed employing SCAPS-1D computations. It is demonstrated that VOC and FF are severely decreased with an increase in the acceptor concentration and Auger capture coefficients of perovskites, thus reducing the device performance. When the Auger capture coefficient is increased to 10-20 cm6 s-1 under the acceptor concentration of 1016 cm-3, the performance is drastically lowered from 21.5% (without taking Auger recombination into account) to 9.9%. The findings suggest that in order to increase the efficiency of perovskite solar cells and prevent the effects of Auger recombination, the Auger recombination coefficients should be less than 10-24 cm6 s-1.

10.
RSC Adv ; 12(50): 32611-32618, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425701

RESUMO

Until now, in all state-of-the-art efficient perovskite solar cells (PSCs), during the fabrication process of the perovskite layer, highly toxic anti-solvents such as toluene, chlorobenzene, and diethyl ether have been used. This is highly concerning and urgently needs to be considered by laboratories and institutes to protect the health of researchers and employees working towards safe PSC fabrication. Green anti-solvents are usually used along with low-performance PSCs. The current study solves the ineptitude of the typical ethyl acetate green anti-solvent by adding a potassium thiocyanate (KSCN) material to it. The KSCN additive causes delay in the perovskite growing process. It guarantees the formation of larger perovskite domains during fabrication. The enlarged perovskite domains reduce the bulk and surface trap density in the perovskite. It enables lower trap-facilitated charge recombination along with efficient charge extraction in PSCs. Overall, the developed method results in a champion performance of 17.12% for PSCs, higher than the 13.78% recorded for control PSCs. The enlarged perovskite domains warrant lower humidity interaction paths with the perovskite composition, indicating higher stability in PSCs.

11.
RSC Adv ; 12(50): 32365-32373, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425703

RESUMO

The great demand for renewable energy has greatly contributed to the development of the solar cell industry. Recently, silicon solar cells have dominated the world market. The ease of processing gives perovskite solar cells (PSCs) an advantage over conventional silicon solar cells. Regular silicon photovoltaics require expensive, multi-step processes accomplished in a specialized ultraclean-chamber facility at an elevated temperature (>1000 °C) and highly vacuumed workspace. Hence, researchers and the solar cell industry have focused on PSC as a great rival to silicon solar cells. Despite this, the highest efficiency was obtained from lead-based PSC, which has a considerably high toxicity issue and low stability related to lead content, so the research field pays attention to lead-free perovskite solar cells. In this digital simulation, tin-based perovskite in this paper, methylammonium tin iodide (MASnI3) with the use of cerium oxide (CeO x ) as an electron transporting layer (ETL) with varying percentages of oxygen, which means different shallow donor densities (ND). The optimum value for the thickness of the absorber layer (perovskite) was made, and the current-voltage characteristics and efficiency calculations were also accomplished for the best cell. Then an improvement was made by changing the ND value of CeO x , and the best-optimized cell parameters were: open circuit voltage (V OC) of 0.92 V, short circuit current density (J SC) of 30.79 mA cm-2, power conversion efficiency (PCE) of 17.77%, and fill factor (FF) of 62.86%.

12.
Nanomaterials (Basel) ; 12(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630861

RESUMO

In this article, ultrascaled junctionless (JL) field-effect phototransistors based on carbon nanotube/nanoribbons with sub-10 nm photogate lengths were computationally assessed using a rigorous quantum simulation. This latter self-consistently solves the Poisson equation with the mode space (MS) non-equilibrium Green's function (NEGF) formalism in the ballistic limit. The adopted photosensing principle is based on the light-induced photovoltage, which alters the electrostatics of the carbon-based junctionless nano-phototransistors. The investigations included the photovoltage behavior, the I-V characteristics, the potential profile, the energy-position-resolved electron density, and the photosensitivity. In addition, the subthreshold swing-photosensitivity dependence as a function of change in carbon nanotube (graphene nanoribbon) diameter (width) was thoroughly analyzed while considering the electronic proprieties and the quantum physics in carbon nanotube/nanoribbon-based channels. As a result, the junctionless paradigm substantially boosted the photosensitivity and improved the scaling capability of both carbon phototransistors. Moreover, from the point of view of comparison, it was found that the junctionless graphene nanoribbon field-effect phototransistors exhibited higher photosensitivity and better scaling capability than the junctionless carbon nanotube field-effect phototransistors. The obtained results are promising for modern nano-optoelectronic devices, which are in dire need of high-performance ultra-miniature phototransistors.

13.
Sci Rep ; 11(1): 19829, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615903

RESUMO

The major losses that limit the efficiency of a single-junction solar cell are thermalization loss and transmission loss. Thus, to efficiently utilize the full solar spectrum and to mitigate these losses, tandem solar cells (TSC) have significantly impacted the photovoltaic (PV) landscape. In this context, the research on perovskite/silicon tandems is currently dominating the research community. The stability improvements of perovskite materials and mature fabrication techniques of silicon have underpinned the rapid progress of perovskite/silicon TSC. However, the low absorption coefficient and high module cost of the silicon are the tailbacks for the mass production of perovskite/silicon TSCs. Therefore, PV technology demands to explore some new materials other than Si to be used as absorber layer in the bottom cell. Thus, here in this work, to mitigate the aforementioned losses and to reduce cost, a 23.36% efficient two-terminal perovskite-PbS CQD monolithic tandem solar cell has been designed through comprehensive device simulations. Before analyzing the performance of the proposed TSC, the performance of perovskite top cells has been optimized in terms of variation in optical properties, thickness, and interface defect density under standalone conditions. Thereafter, filtered spectrum and associated integrated filtered power by the top cell at different perovskite thickness from 50 to 500 nm is obtained to conceive the presence of the top cell above the bottom cell with different perovskite thickness. The current matching by concurrently varying the thickness of both the top and bottom subcell has also been done to obtain the maximum deliverable tandem JSC for the device under consideration. The top/bottom subcell with current matched JSC of 16.68 mA cm-2/16.62 mA cm-2 showed the conversion efficiency of 14.60%/9.07% under tandem configuration with an optimized thickness of 143 nm/470 nm, where the top cell is simulated under AM1.5G spectrum, and bottom cell is exposed to the spectrum filtered by 143 nm thick top cell. Further, the voltages at equal current points are added together to generate tandem J-V characteristics. This work concludes a 23.36% efficient perovskite-PbS CQD tandem design with 1.79 V (VOC), 16.67 mA cm-2 (JSC) and 78.3% (FF). The perovskite-PbS CQD tandem device proposed in this work may pave the way for the development of high-efficiency tandem solar cells for low-cost applications.

14.
RSC Adv ; 11(59): 37366-37374, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35496422

RESUMO

The conversion efficiencies for silicon-based photovoltaic devices have become stagnant, with the record conversion efficiency of 26.7% achieved in 2017. This record efficiency is also close to the theoretical Auger limit of 29.4% for single-junction silicon solar cells. Therefore, it is anticipated that further enhancement in conversion efficiency could only be achieved by adopting multijunction or tandem concepts for silicon PV devices. In this context, perovskites are widely preferred for tandem application with silicon solar cells to mitigate thermalization and non-absorbed photon losses to achieve higher conversion efficiencies. The perovskite-silicon (PVK-Si) tandem design can deliver 45.1% efficiency, and currently, this design holds a record conversion efficiency of 29.5%. Therefore, critical research and development activities are required to unlock the potential of such devices. Thus, we have designed and investigated enhanced hole extraction PVK-Si monolithic tandem solar cells with 33% power conversion efficiency (PCE) to make a humble contribution in this field. The device is facilitated with Me-4PACz and ITO-based ideal tunnel recombination junctions for current matching, with parasitic absorption losses. Detailed standalone and tandem analysis has been carried out in terms of absorber layer thickness variation, illuminated current density-voltage (J-V) curves, external quantum efficiency (EQE), energy band diagrams (EBDs), filtered spectra, filtered integrated power, current matching, and tandem PV parameters to finalize the conversion efficiency. The device constructed using a 1.68 eV perovskite top cell and 1.12 eV c-Si-based heterojunction with an intrinsic thin layer (HIT) based bottom cell showed an open-circuit voltage, V OC, of as high as 2.02 V. The comprehensive analysis of PVK-Si tandem devices reported in this work may pave the way for developing high-efficiency tandem solar cells in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA