Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Cancer Res ; 162: 45-74, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39069369

RESUMO

Protein Tyrosine Phosphatases (PTPs) help to maintain the balance of protein phosphorylation signals that drive cell division, proliferation, and differentiation. These enzymes are also well-suited to redox-dependent signaling and oxidative stress response due to their cysteine-based catalytic mechanism, which requires a deprotonated thiol group at the active site. This review focuses on PTP structural characteristics, active site chemical properties, and vulnerability to change by reactive oxygen species (ROS). PTPs can be oxidized and inactivated by H2O2 through three non-exclusive mechanisms. These pathways are dependent on the coordinated actions of other H2O2-sensitive proteins, such as peroxidases like Peroxiredoxins (Prx) and Thioredoxins (Trx). PTPs undergo reversible oxidation by converting their active site cysteine from thiol to sulfenic acid. This sulfenic acid can then react with adjacent cysteines to form disulfide bonds or with nearby amides to form sulfenyl-amide linkages. Further oxidation of the sulfenic acid form to the sulfonic or sulfinic acid forms causes irreversible deactivation. Understanding the structural changes involved in both reversible and irreversible PTP oxidation can help with their chemical manipulation for therapeutic intervention. Nonetheless, more information remains unidentified than is presently known about the precise dynamics of proteins participating in oxidation events, as well as the specific oxidation states that can be targeted for PTPs. This review summarizes current information on PTP-specific oxidation patterns and explains how ROS-mediated signal transmission interacts with phosphorylation-based signaling machinery controlled by growth factor receptors and PTPs.


Assuntos
Oxirredução , Proteínas Tirosina Fosfatases , Espécies Reativas de Oxigênio , Humanos , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/química , Espécies Reativas de Oxigênio/metabolismo , Animais , Transdução de Sinais , Estresse Oxidativo , Domínio Catalítico , Peróxido de Hidrogênio/metabolismo
2.
Nucleic Acids Res ; 52(12): 7225-7244, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38709899

RESUMO

Emerging evidence indicates that arginine methylation promotes the stability of arginine-glycine-rich (RGG) motif-containing RNA-binding proteins (RBPs) and regulates gene expression. Here, we report that post-translational modification of FXR1 enhances the binding with mRNAs and is involved in cancer cell growth and proliferation. Independent point mutations in arginine residues of FXR1's nuclear export signal (R386 and R388) and RGG (R453, R455 and R459) domains prevent it from binding to RNAs that form G-quadruplex (G4) RNA structures. Disruption of G4-RNA structures by lithium chloride failed to bind with FXR1, indicating its preference for G4-RNA structure containing mRNAs. Furthermore, loss-of-function of PRMT5 inhibited FXR1 methylation both in vivo and in vitro, affecting FXR1 protein stability, inhibiting RNA-binding activity and cancer cell growth and proliferation. Finally, the enhanced crosslinking and immunoprecipitation (eCLIP) analyses reveal that FXR1 binds with the G4-enriched mRNA targets such as AHNAK, MAP1B, AHNAK2, HUWE1, DYNC1H1 and UBR4 and controls its mRNA expression in cancer cells. Our findings suggest that PRMT5-mediated FXR1 methylation is required for RNA/G4-RNA binding, which promotes gene expression in cancer cells. Thus, FXR1's structural characteristics and affinity for RNAs preferentially G4 regions provide new insights into the molecular mechanism of FXR1 in oral cancer cells.


Assuntos
Arginina , Proliferação de Células , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a RNA , Humanos , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Arginina/metabolismo , Arginina/genética , Metilação , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Linhagem Celular Tumoral , Ligação Proteica , Quadruplex G , Regulação Neoplásica da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/química , Processamento de Proteína Pós-Traducional , Neoplasias/genética , Neoplasias/metabolismo , Células HEK293 , Estabilidade Proteica
3.
J Chem Inf Model ; 64(4): 1331-1346, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38346324

RESUMO

Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases , Domínio Catalítico , Proteínas Tirosina Fosfatases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/química
4.
Biology (Basel) ; 12(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37997969

RESUMO

Cyclic-AMP-dependent protein kinase A (PKA) is a critical enzyme involved in various signaling pathways that plays a crucial role in regulating cellular processes including metabolism, gene transcription, cell proliferation, and differentiation. In this study, the mechanisms of allostery in PKA were investigated by analyzing the vast repertoire of crystal structures available in the RCSB database. From existing structures of murine and human PKA, we elucidated the conformational ensembles and protein dynamics that are altered in a ligand-dependent manner. Distance metrics to analyze conformations of the G-loop were proposed to delineate different states of PKA and were compared to existing structural metrics. Furthermore, ligand-dependent flexibility was investigated through normalized B'-factors to better understand the inherent dynamics in PKA. The presented study provides a contemporary approach to traditional methods in engaging the use of crystal structures for understanding protein dynamics. Importantly, our studies provide a deeper understanding into the conformational ensemble of PKA as the enzyme progresses through its catalytic cycle. These studies provide insights into kinase regulation that can be applied to both PKA individually and protein kinases as a class.

5.
Adv Cancer Res ; 160: 17-60, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704288

RESUMO

Since the discovery of tyrosine phosphorylation being a critical modulator of cancer signaling, proteins regulating phosphotyrosine levels in cells have fast become targets of therapeutic intervention. The nonreceptor protein tyrosine phosphatase (PTP) coded by the PTPN11 gene "SHP2" integrates phosphotyrosine signaling from growth factor receptors into the RAS/RAF/ERK pathway and is centrally positioned in processes regulating cell development and oncogenic transformation. Dysregulation of SHP2 expression or activity is linked to tumorigenesis and developmental defects. Even as a compelling anti-cancer target, SHP2 was considered "undruggable" for a long time owing to its conserved catalytic PTP domain that evaded drug development. Recently, SHP2 has risen from the "undruggable curse" with the discovery of small molecules that manipulate its intrinsic allostery for effective inhibition. SHP2's unique domain arrangement and conformation(s) allow for a truly novel paradigm of inhibitor development relying on skillful targeting of noncatalytic sites on proteins. In this review we summarize the biological functions, signaling properties, structural attributes, allostery and inhibitors of SHP2.


Assuntos
Neoplasias , Humanos , Fosfotirosina , Neoplasias/tratamento farmacológico , Carcinogênese , Diferenciação Celular , Transformação Celular Neoplásica
6.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37547015

RESUMO

Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study we employ this paradigm to answer a basic question: in enzyme superfamilies where the catalytic mechanism, active sites and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as the representatives of the conserved Protein Tyrosine Phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.

7.
J Chem Phys ; 158(8): 081001, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36859094

RESUMO

Allosteric regulation of proteins continues to be an engaging research topic for the scientific community. Models describing allosteric communication have evolved from focusing on conformation-based descriptors of protein structural changes to appreciating the role of internal protein dynamics as a mediator of allostery. Here, we explain a "violin model" for allostery as a contemporary method for approaching the Cooper-Dryden model based on redistribution of protein thermal fluctuations. Based on graph theory, the violin model makes use of community network analysis to functionally cluster correlated protein motions obtained from molecular dynamics simulations. This Review provides the theory and workflow of the methodology and explains the application of violin model to unravel the workings of protein kinase A.


Assuntos
Redes Comunitárias , Simulação de Dinâmica Molecular , Humanos , Regulação Alostérica , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA