Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 9073, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643218

RESUMO

ADAMTS13, a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13, regulates the length of Von Willebrand factor (VWF) multimers and their platelet-binding activity. ADAMTS13 is constitutively secreted as an active protease and is not inhibited by circulating protease inhibitors. Therefore, the mechanisms that regulate ADAMTS13 protease activity are unknown. We performed an unbiased proteomics screen to identify ligands of ADAMTS13 by optimizing the application of BioID to plasma. Plasma BioID identified 5 plasma proteins significantly labeled by the ADAMTS13-birA* fusion, including VWF and plasminogen. Glu-plasminogen, Lys-plasminogen, mini-plasminogen, and apo(a) bound ADAMTS13 with high affinity, whereas micro-plasminogen did not. None of the plasminogen variants or apo(a) bound to a C-terminal truncation variant of ADAMTS13 (MDTCS). The binding of plasminogen to ADAMTS13 was attenuated by tranexamic acid or ε-aminocaproic acid, and tranexamic acid protected ADAMTS13 from plasmin degradation. These data demonstrate that plasminogen is an important ligand of ADAMTS13 in plasma by binding to the C-terminus of ADAMTS13. Plasmin proteolytically degrades ADAMTS13 in a lysine-dependent manner, which may contribute to its regulation. Adapting BioID to identify protein-interaction networks in plasma provides a powerful new tool to study protease regulation in the cardiovascular system.


Assuntos
Fibrinolisina , Ácido Tranexâmico , Fibrinolisina/metabolismo , Fator de von Willebrand/metabolismo , Proteína ADAMTS13 , Proteínas ADAM/metabolismo , Ligantes , Plasminogênio/metabolismo
2.
Shock ; 61(2): 189-196, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150358

RESUMO

ABSTRACT: Sepsis is defined as a life-threatening organ dysfunction caused by excessive host response to infection, and represents the most common cause of in-hospital deaths. Sepsis accounts for 30% of all critically ill patients in the intensive care unit (ICU), and has a global mortality rate of 20%. Activation of blood coagulation during sepsis and septic shock can lead to disseminated intravascular coagulation, which is characterized by microvascular thrombosis. Von Willebrand factor (VWF) and ADAMTS13 are two important regulators of blood coagulation that may be important links between sepsis and mortality in the ICU. Herein we review our current understanding of VWF and ADAMTS13 in sepsis and other critical illnesses and discuss their contribution to disease pathophysiology, their use as markers of severe illness, and potential targets for new therapeutic development.


Assuntos
Coagulação Intravascular Disseminada , Sepse , Choque Séptico , Trombose , Humanos , Fator de von Willebrand , Proteína ADAMTS13
3.
J Thromb Haemost ; 21(7): 1789-1801, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36990157

RESUMO

BACKGROUND: ADAMTS13 is a circulating metalloprotease that cleaves von Willebrand factor (VWF) in a shear-dependent manner. ADAMTS13 is secreted as an active protease but has a long half-life, suggesting that it is resistant to circulating protease inhibitors. These zymogen-like properties indicate that ADAMTS13 exists as a latent protease that is activated by its substrate. OBJECTIVES: To investigate the mechanism of ADAMTS13 latency and resistance to metalloprotease inhibitors. METHODS: Probe the active site of ADAMTS13 and variants using alpha-2 macroglobulin (A2M), tissue inhibitors of metalloproteases (TIMPs), and Marimastat. RESULTS: ADAMTS13 and C-terminal deletion mutants are not inhibited by A2M, TIMPs, or Marimastat, but cleave FRETS-VWF73, suggesting that the metalloprotease domain is latent in the absence of substrate. Within the metalloprotease domain, mutating the gatekeeper triad (R193, D217, D252) or substituting the calcium-binding (R180-R193) or the variable (G236-S263) loops with corresponding features from ADAMTS5 did not sensitize MDTCS to inhibition. However, substituting the calcium-binding loop and an extended variable loop (G236-S263) corresponding to the S1-S1' pockets with those from ADAMTS5, resulted in MDTCS-GVC5 inhibition by Marimastat, but not by A2M or TIMP3. Substituting the MD domains of ADAMTS5 into full-length ADAMTS13 resulted in a 50-fold reduction in activity compared with the substitution into MDTCS. However, both chimeras were susceptible to inhibition, suggesting that the closed conformation does not contribute to the latency of the metalloprotease domain. CONCLUSION: The metalloprotease domain protects ADAMTS13 from inhibitors and exists in a latent state that is partially maintained by loops flanking the S1 and S1' specificity pockets.


Assuntos
Proteínas ADAM , Fator de von Willebrand , Humanos , Fator de von Willebrand/química , Proteínas ADAM/genética , Proteínas ADAM/química , Cálcio , Ácidos Hidroxâmicos/farmacologia , Proteína ADAMTS13/genética
4.
J Thromb Haemost ; 20(4): 821-832, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34967109

RESUMO

BACKGROUND: Previously, we showed that histidine-rich glycoprotein (HRG) binds factor (F) XIIa with high affinity, inhibits FXII autoactivation and FXIIa-mediated activation of FXI, and attenuates ferric chloride-induced arterial thrombosis in mice. Therefore, HRG downregulates the contact pathway in vitro and in vivo. OBJECTIVE: To identify the domains on HRG responsible for contact pathway inhibition. METHODS: Recombinant HRG domain constructs (N-terminal [N1, N2, and N1N2], proline-rich regions, histidine-rich region [HRR], and C-terminal) were expressed and purified. The affinities of plasma-derived HRG, HRG domain constructs, and synthetic HRR peptides for FXII, FXIIa, ß-FXIIa, and polyphosphate (polyP) were determined using surface plasmon resonance, and their effects on polyP-induced FXII autoactivation, FXIIa-mediated activation of FXI and prekallikrein, the activated partial thromboplastin time (APTT), and thrombin generation were examined. RESULTS: HRG and HRG domain constructs bind FXIIa, but not FXII or ß-FXII. HRR, N1, and N1N2 bind FXIIa with affinities comparable with that of HRG, whereas the remaining domains bind with lower affinity. Synthetic HRR peptides bind FXIIa and polyP with high affinity. HRG and HRR significantly inhibit FXII autoactivation and prolong the APTT. Like HRG, synthetic HRR peptides inhibit FXII autoactivation, attenuate FXIIa-mediated activation of prekallikrein and FXI, prolong the APTT, and attenuate thrombin generation. CONCLUSION: The interaction of HRG with FXIIa and polyP is predominantly mediated by the HRR domain. Like intact HRG, HRR downregulates the contact pathway and contributes to HRG-mediated down regulation of coagulation.


Assuntos
Pré-Calicreína , Trombina , Animais , Fator XII/metabolismo , Fator XIIa/metabolismo , Humanos , Camundongos , Peptídeos/farmacologia , Polifosfatos , Pré-Calicreína/metabolismo , Proteínas , Trombina/metabolismo
5.
PLoS One ; 16(2): e0247017, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606732

RESUMO

Sepsis is a life-threatening disease characterized by excessive host response to infection that can lead to activation of the coagulation system. Von Willebrand Factor (VWF) and ADAMTS13 are important regulators of hemostasis and their dysregulation during sepsis progression is not well understood. Herein we characterize ADAMTS13 and VWF in septic and non-septic patients. ADAMTS13 activity, ADAMTS13 antigen, VWF antigen, myeloperoxidase, and protein C, were measured in plasma collected from 40 septic patients (20 non-survivors and 20 survivors) and 40 non-septic patients on the first and last day of their ICU stay. ADAMTS13 activity and ADAMTS13 antigen were reduced, whereas VWF antigen was elevated among septic patients compared to non-septic patients and healthy controls. Non-septic patients also exhibited elevated VWF antigen and reduced ADAMTS13 activity, but to a lesser extent than septic patients. Non-survivor septic patients exhibited the lowest levels of ADAMTS13 activity. ADAMTS13 activity:antigen ratio was similar across all patient cohorts suggesting that the specific activity of ADAMTS13 remains unchanged. Therefore, reduced ADAMTS13 function in circulation is likely due to a reduction in circulating levels. We suggest that massive release of VWF in response to inflammation consumes limited circulating ADAMTS13, resulting in the imbalance observed between VWF and ADAMTS13 among septic and to a lesser extent in non-septic ICU patients. Changes to ADAMTS13 did not correlate with myeloperoxidase or protein C levels. Reduced ADAMTS13 activity and antigen, and elevated VWF antigen observed among all patient cohorts on admission remained unchanged in survivors at ICU discharge. Prolonged reduction in ADAMTS13 activity and antigen in septic patients coincides with elevated levels of VWF. The persistent abnormalities in ADAMTS13 and VWF in sepsis patients discharged from the ICU may contribute to a sustained prothrombotic state.


Assuntos
Proteína ADAMTS13/metabolismo , Unidades de Terapia Intensiva , Sepse/metabolismo , Fator de von Willebrand/metabolismo , Adulto , Feminino , Humanos , Masculino
6.
Sci Rep ; 10(1): 4049, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32132579

RESUMO

The ability to prevent blood loss in response to injury is a conserved function of all vertebrates. Complete deficiency of the central clotting enzyme prothrombin has never been observed in humans and is incompatible with postnatal life in mice, thus limiting the ability to study its role in vivo. Zebrafish are able to tolerate severe hemostatic deficiencies that are lethal in mammals. We have generated a targeted genetic deletion in the kringle 1 domain of zebrafish prothrombin. Homozygous mutant embryos develop normally into the mid-juvenile stage but demonstrate complete mortality by 2 months of age primarily due to internal hemorrhage. Mutants are unable to form occlusive venous and arterial thrombi in response to endothelial injury, a defect that was phenocopied using direct oral anticoagulants. Human prothrombin engineered with the equivalent mutation exhibits a severe reduction in secretion, thrombin generation, and fibrinogen cleavage. Together, these data demonstrate the conserved function of thrombin in zebrafish and provide insight into the role of kringle 1 in prothrombin maturation and activity. Understanding how zebrafish are able to develop normally and survive into early adulthood without thrombin activity will provide important insight into its pleiotropic functions as well as the management of patients with bleeding disorders.


Assuntos
Mutação , Protrombina , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Camundongos , Domínios Proteicos , Protrombina/genética , Protrombina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
7.
Biochim Biophys Acta Biomembr ; 1860(11): 2356-2365, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29879417

RESUMO

OSBP binds, extracts and transfers sterols and phosphatidylinositol-4-phosphate (PI(4)P between liposomes, but the sequence of steps at the membrane surface leading to ligand removal is poorly characterized. In this study, we used dual polarization interferometry (DPI), a label-free surface analytical technique, to characterize the interaction of recombinant, purified OSBP as it flows over immobilized dioleoyl-phosphatidylcholine (DOPC) bilayers containing PI(4)P, cholesterol or 25-hydroxycholesterol. Kinetics of membrane interaction were analyzed for PI(4)P-binding and phosphorylation mutants of OSBP. Wild-type OSBP demonstrated a distinctive association with immobilized DOPC bilayers containing 1-8 mol% PI(4)P that was characterized by initial saturable binding followed by desorption, indicative of PI(4)P extraction. In support of this conclusion, an OSBP mutant with impaired binding and extraction of PI(4)P was stably absorbed to PI(4)P-containing membranes, while a pleckstrin homology domain mutant did not associate with PI(4)P-containing membranes. The inclusion of >2 mol% cholesterol, but not 25-hydroxycholesterol, in membranes, enhanced the absorption of the wild-type OSBP. A phosphomimetic of OSBP with enhanced in vitro sterol binding activity displayed membrane interaction properties similar to wild-type. These real-time flow studies allow us to dissect the association of OSBP with PI(4)P into discrete components; initial recruitment to PI(4)P membranes by the PH domain, detection and extraction of PI(4)P, and desorption due to ligand depletion.


Assuntos
Bicamadas Lipídicas/metabolismo , Receptores de Esteroides/metabolismo , Animais , Colesterol/química , Hidroxicolesteróis/química , Interferometria , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosfatos de Fosfatidilinositol/química , Receptores de Esteroides/química , Receptores de Esteroides/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
8.
J Am Chem Soc ; 135(4): 1394-405, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23276254

RESUMO

A series of naphthyridinol analogs of α-tocopherol (α-TOH, right) with varying sidechain substitution was synthesized to determine how systematic changes in the lipophilicity of these potent antioxidants impact their radical-trapping activities in lipid bilayers, regenerability by water-soluble reductants, and binding to human tocopherol transport protein (TTP). The activities of the naphthyridinols were assayed in phosphatidylcholine unilamellar liposomes using a recently developed high-throughput assay that employs a boron dipyrromethene conjugate of α-TOH (H(2)B-PMHC) that undergoes fluorescence enhancement upon oxidation. The naphthyridinols afforded a dose-dependent protection of H(2)B-PMHC consistent with unprecedented peroxyl radical-trapping activity in lipid bilayers. While sidechain length and/or branching had no effect on their apparent reactivity, it dramatically impacted reaction stoichiometry, with more lipophilic compounds trapping two peroxyl radicals and more hydrophilic compounds trapping significantly less than one. It is suggested that the less lipophilic compounds autoxidize rapidly in the aqueous phase and that preferential partitioning of the more lipophilic compounds to the bilayer protects them from autoxidation. The cooperativity of a lipophilic naphthyridinol with water-soluble reducing agents was also studied in liposomes using H(2)B-PMHC and revealed superior regenerability by each of ascorbate, N-acetylcysteine, and urate when compared to α-TOH. Binding assays with human TTP, a key determinant of the bioavailability of the tocopherols, reveal that the naphthyiridinols can be very good ligands for the protein. In fact, naphthyridinols with sidechains of eight or more carbons had affinities for TTP which were similar to, and in one case 10-fold better than, α-TOH.


Assuntos
Antioxidantes/síntese química , Bicamadas Lipídicas/química , Naftiridinas/síntese química , Vitamina E/química , alfa-Tocoferol/síntese química , Antioxidantes/química , Estrutura Molecular , Naftiridinas/química , alfa-Tocoferol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA