Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
JAMA Cardiol ; 9(5): 418-427, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477908

RESUMO

Importance: Epicardial and pericardial adipose tissue (EPAT) has been associated with cardiovascular diseases such as atrial fibrillation or flutter (AF) and coronary artery disease (CAD), but studies have been limited in sample size or drawn from selected populations. It has been suggested that the association between EPAT and cardiovascular disease could be mediated by local or paracrine effects. Objective: To evaluate the association of EPAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of EPAT in a large population cohort. Design, Setting, and Participants: A deep learning model was trained to quantify EPAT area from 4-chamber magnetic resonance images using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. Prospective associations were additionally controlled for abdominal visceral adipose tissue (VAT) volumes. A genome-wide association study was performed, and a polygenic score (PGS) for EPAT was examined in independent FinnGen cohort study participants. Data analyses were conducted from March 2022 to December 2023. Exposures: The primary exposures were magnetic resonance imaging-derived continuous measurements of epicardial and pericardial adipose tissue area and visceral adipose tissue volume. Main Outcomes and Measures: Prevalent and incident CAD, AF, heart failure (HF), stroke, and type 2 diabetes (T2D). Results: After exclusions, this study included 44 475 participants (mean [SD] age, 64.1 [7.7] years; 22 972 female [51.7%]) from the UK Biobank. Cross-sectional and prospective cardiovascular disease associations were evaluated for a mean (SD) of 3.2 (1.5) years of follow-up. Prospective associations were additionally controlled for abdominal VAT volumes for 38 527 participants. A PGS for EPAT was examined in 453 733 independent FinnGen cohort study participants. EPAT was positively associated with male sex (ß = +0.78 SD in EPAT; P < 3 × 10-324), age (Pearson r = 0.15; P = 9.3 × 10-229), body mass index (Pearson r = 0.47; P < 3 × 10-324), and VAT (Pearson r = 0.72; P < 3 × 10-324). EPAT was more elevated in prevalent HF (ß = +0.46 SD units) and T2D (ß = +0.56) than in CAD (ß = +0.23) or AF (ß = +0.18). EPAT was associated with incident HF (hazard ratio [HR], 1.29 per +1 SD in EPAT; 95% CI, 1.17-1.43), T2D (HR, 1.63; 95% CI, 1.51-1.76), and CAD (HR, 1.19; 95% CI, 1.11-1.28). However, the associations were no longer significant when controlling for VAT. Seven genetic loci were identified for EPAT, implicating transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2, and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The EPAT PGS was associated with T2D (odds ratio [OR], 1.06; 95% CI, 1.05-1.07; P =3.6 × 10-44), HF (OR, 1.05; 95% CI, 1.04-1.06; P =4.8 × 10-15), CAD (OR, 1.04; 95% CI, 1.03-1.05; P =1.4 × 10-17), AF (OR, 1.04; 95% CI, 1.03-1.06; P =7.6 × 10-12), and stroke in FinnGen (OR, 1.02; 95% CI, 1.01-1.03; P =3.5 × 10-3) per 1 SD in PGS. Conclusions and Relevance: Results of this cohort study suggest that epicardial and pericardial adiposity was associated with incident cardiovascular diseases, but this may largely reflect a metabolically unhealthy adiposity phenotype similar to abdominal visceral adiposity.


Assuntos
Adiposidade , Doenças Cardiovasculares , Pericárdio , Humanos , Pericárdio/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Adiposidade/genética , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/epidemiologia , Estudos Transversais , Idoso , Tecido Adiposo/diagnóstico por imagem , Estudos Prospectivos , Estudo de Associação Genômica Ampla , Imageamento por Ressonância Magnética , Gordura Intra-Abdominal/diagnóstico por imagem
2.
JAMA Cardiol ; 9(2): 174-181, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37950744

RESUMO

Importance: The gold standard for outcome adjudication in clinical trials is medical record review by a physician clinical events committee (CEC), which requires substantial time and expertise. Automated adjudication of medical records by natural language processing (NLP) may offer a more resource-efficient alternative but this approach has not been validated in a multicenter setting. Objective: To externally validate the Community Care Cohort Project (C3PO) NLP model for heart failure (HF) hospitalization adjudication, which was previously developed and tested within one health care system, compared to gold-standard CEC adjudication in a multicenter clinical trial. Design, Setting, and Participants: This was a retrospective analysis of the Influenza Vaccine to Effectively Stop Cardio Thoracic Events and Decompensated Heart Failure (INVESTED) trial, which compared 2 influenza vaccines in 5260 participants with cardiovascular disease at 157 sites in the US and Canada between September 2016 and January 2019. Analysis was performed from November 2022 to October 2023. Exposures: Individual sites submitted medical records for each hospitalization. The central INVESTED CEC and the C3PO NLP model independently adjudicated whether the cause of hospitalization was HF using the prepared hospitalization dossier. The C3PO NLP model was fine-tuned (C3PO + INVESTED) and a de novo NLP model was trained using half the INVESTED hospitalizations. Main Outcomes and Measures: Concordance between the C3PO NLP model HF adjudication and the gold-standard INVESTED CEC adjudication was measured by raw agreement, κ, sensitivity, and specificity. The fine-tuned and de novo INVESTED NLP models were evaluated in an internal validation cohort not used for training. Results: Among 4060 hospitalizations in 1973 patients (mean [SD] age, 66.4 [13.2] years; 514 [27.4%] female and 1432 [72.6%] male]), 1074 hospitalizations (26%) were adjudicated as HF by the CEC. There was good agreement between the C3PO NLP and CEC HF adjudications (raw agreement, 87% [95% CI, 86-88]; κ, 0.69 [95% CI, 0.66-0.72]). C3PO NLP model sensitivity was 94% (95% CI, 92-95) and specificity was 84% (95% CI, 83-85). The fine-tuned C3PO and de novo NLP models demonstrated agreement of 93% (95% CI, 92-94) and κ of 0.82 (95% CI, 0.77-0.86) and 0.83 (95% CI, 0.79-0.87), respectively, vs the CEC. CEC reviewer interrater reproducibility was 94% (95% CI, 93-95; κ, 0.85 [95% CI, 0.80-0.89]). Conclusions and Relevance: The C3PO NLP model developed within 1 health care system identified HF events with good agreement relative to the gold-standard CEC in an external multicenter clinical trial. Fine-tuning the model improved agreement and approximated human reproducibility. Further study is needed to determine whether NLP will improve the efficiency of future multicenter clinical trials by identifying clinical events at scale.

3.
medRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662283

RESUMO

Background: The gold standard for outcome adjudication in clinical trials is chart review by a physician clinical events committee (CEC), which requires substantial time and expertise. Automated adjudication by natural language processing (NLP) may offer a more resource-efficient alternative. We previously showed that the Community Care Cohort Project (C3PO) NLP model adjudicates heart failure (HF) hospitalizations accurately within one healthcare system. Methods: This study externally validated the C3PO NLP model against CEC adjudication in the INVESTED trial. INVESTED compared influenza vaccination formulations in 5260 patients with cardiovascular disease at 157 North American sites. A central CEC adjudicated the cause of hospitalizations from medical records. We applied the C3PO NLP model to medical records from 4060 INVESTED hospitalizations and evaluated agreement between the NLP and final consensus CEC HF adjudications. We then fine-tuned the C3PO NLP model (C3PO+INVESTED) and trained a de novo model using half the INVESTED hospitalizations, and evaluated these models in the other half. NLP performance was benchmarked to CEC reviewer inter-rater reproducibility. Results: 1074 hospitalizations (26%) were adjudicated as HF by the CEC. There was high agreement between the C3PO NLP and CEC HF adjudications (agreement 87%, kappa statistic 0.69). C3PO NLP model sensitivity was 94% and specificity was 84%. The fine-tuned C3PO and de novo NLP models demonstrated agreement of 93% and kappa of 0.82 and 0.83, respectively. CEC reviewer inter-rater reproducibility was 94% (kappa 0.85). Conclusion: Our NLP model developed within a single healthcare system accurately identified HF events relative to the gold-standard CEC in an external multi-center clinical trial. Fine-tuning the model improved agreement and approximated human reproducibility. NLP may improve the efficiency of future multi-center clinical trials by accurately identifying clinical events at scale.

4.
medRxiv ; 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37502935

RESUMO

Background: While previous studies have reported associations of pericardial adipose tissue (PAT) with cardiovascular diseases such as atrial fibrillation and coronary artery disease, they have been limited in sample size or drawn from selected populations. Additionally, the genetic determinants of PAT remain largely unknown. We aimed to evaluate the association of PAT with prevalent and incident cardiovascular disease and to elucidate the genetic basis of PAT in a large population cohort. Methods: A deep learning model was trained to quantify PAT area from four-chamber magnetic resonance images in the UK Biobank using semantic segmentation. Cross-sectional and prospective cardiovascular disease associations were evaluated, controlling for sex and age. A genome-wide association study was performed, and a polygenic score (PGS) for PAT was examined in 453,733 independent FinnGen study participants. Results: A total of 44,725 UK Biobank participants (51.7% female, mean [SD] age 64.1 [7.7] years) were included. PAT was positively associated with male sex (ß = +0.76 SD in PAT), age (r = 0.15), body mass index (BMI; r = 0.47) and waist-to-hip ratio (r = 0.55) (P < 1×10-230). PAT was more elevated in prevalent heart failure (ß = +0.46 SD units) and type 2 diabetes (ß = +0.56) than in coronary artery disease (ß = +0.22) or AF (ß = +0.18). PAT was associated with incident heart failure (HR = 1.29 per +1 SD in PAT [95% CI 1.17-1.43]) and type 2 diabetes (HR = 1.63 [1.51-1.76]) during a mean 3.2 (±1.5) years of follow-up; the associations remained significant when controlling for BMI. We identified 5 novel genetic loci for PAT and implicated transcriptional regulators of adipocyte morphology and brown adipogenesis (EBF1, EBF2 and CEBPA) and regulators of visceral adiposity (WARS2 and TRIB2). The PAT PGS was associated with T2D, heart failure, coronary artery disease and atrial fibrillation in FinnGen (ORs 1.03-1.06 per +1 SD in PGS, P < 2×10-10). Conclusions: PAT shares genetic determinants with abdominal adiposity and is an independent predictor of incident type 2 diabetes and heart failure.

5.
Sci Transl Med ; 14(652): eabl5654, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35857625

RESUMO

Dilated cardiomyopathy (DCM) is characterized by reduced cardiac output, as well as thinning and enlargement of left ventricular chambers. These characteristics eventually lead to heart failure. Current standards of care do not target the underlying molecular mechanisms associated with genetic forms of heart failure, driving a need to develop novel therapeutics for DCM. To identify candidate therapeutics, we developed an in vitro DCM model using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) deficient in B-cell lymphoma 2 (BCL2)-associated athanogene 3 (BAG3). With these BAG3-deficient iPSC-CMs, we identified cardioprotective drugs using a phenotypic screen and deep learning. From a library of 5500 bioactive compounds and siRNA validation, we found that inhibiting histone deacetylase 6 (HDAC6) was cardioprotective at the sarcomere level. We translated this finding to a BAG3 cardiomyocyte-knockout (BAG3cKO) mouse model of DCM, showing that inhibiting HDAC6 with two isoform-selective inhibitors (tubastatin A and a novel inhibitor TYA-018) protected heart function. In BAG3cKO and BAG3E455K mice, HDAC6 inhibitors improved left ventricular ejection fraction and reduced left ventricular diameter at diastole and systole. In BAG3cKO mice, TYA-018 protected against sarcomere damage and reduced Nppb expression. Based on integrated transcriptomics and proteomics and mitochondrial function analysis, TYA-018 also enhanced energetics in these mice by increasing expression of targets associated with fatty acid metabolism, protein metabolism, and oxidative phosphorylation. Our results demonstrate the power of combining iPSC-CMs with phenotypic screening and deep learning to accelerate drug discovery, and they support developing novel therapies that address underlying mechanisms associated with heart disease.


Assuntos
Cardiomiopatia Dilatada , Aprendizado Profundo , Insuficiência Cardíaca , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/tratamento farmacológico , Cardiomiopatia Dilatada/genética , Modelos Animais de Doenças , Insuficiência Cardíaca/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Camundongos , Miócitos Cardíacos/metabolismo , Volume Sistólico , Função Ventricular Esquerda
6.
Elife ; 102021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34338636

RESUMO

Drug-induced cardiotoxicity and hepatotoxicity are major causes of drug attrition. To decrease late-stage drug attrition, pharmaceutical and biotechnology industries need to establish biologically relevant models that use phenotypic screening to detect drug-induced toxicity in vitro. In this study, we sought to rapidly detect patterns of cardiotoxicity using high-content image analysis with deep learning and induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We screened a library of 1280 bioactive compounds and identified those with potential cardiotoxic liabilities in iPSC-CMs using a single-parameter score based on deep learning. Compounds demonstrating cardiotoxicity in iPSC-CMs included DNA intercalators, ion channel blockers, epidermal growth factor receptor, cyclin-dependent kinase, and multi-kinase inhibitors. We also screened a diverse library of molecules with unknown targets and identified chemical frameworks that show cardiotoxic signal in iPSC-CMs. By using this screening approach during target discovery and lead optimization, we can de-risk early-stage drug discovery. We show that the broad applicability of combining deep learning with iPSC technology is an effective way to interrogate cellular phenotypes and identify drugs that may protect against diseased phenotypes and deleterious mutations.


Assuntos
Cardiotoxicidade/etiologia , Aprendizado Profundo , Coração/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos
7.
Reprod Biomed Online ; 42(1): 66-74, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189576

RESUMO

RESEARCH QUESTION: Is embryo selection by Dana (automatic software for embryo evaluation) associated with a higher implantation rate in IVF treatments? DESIGN: A three-phase study for Dana system's validation: creation of a data-cloud of known implantation data (KID) embryos from 1676 transferred embryos; embryo evaluation by Dana considering manual annotations and embryo development videos (389 transferred embryos); and validation of Dana automatic selection, without embryologist's intervention (147 transferred embryos); RESULTS: The implantation rate of the 1021 KID embryos from phase 1 served to set four grades of embryos referring to implantation rate: A = 34%, B = 25%, C = 24%, and D = 19%. Phase 2: a classification ranking according to the unit average distance (UAD) and implantation potential was established: top (UAD ≤0.50), high (UAD = 0.51-0.66), medium (UAD = 0.67-1.03) and low (UAD >1.03). Pregnancy rates were 59%, 46%, 36% and 28%, respectively (P < 0.001). Phase 3: embryos were automatically categorized according to Dana's classification ranking. Most implanted embryos were found in groups top, high and medium (UAD ≤1.03), whereas the implantation rate in group low (UAD >1.03) was significantly lower: 46% versus 25%, respectively (P = 0.037). The twin gestation rate was higher when number of top embryos (UAD ≤0.5) transferred were two (52%) versus one (25%) (P < 0.001). CONCLUSIONS: Embryo selection based on Dana ranking increases the success of IVF treatments at least in oocyte donation programmes. The multicentre nature of the study supports its applicability at different clinics, standardizing the embryo development's interpretation. Dana's innovation is that the system increases its accuracy as the database grows.


Assuntos
Blastocisto/classificação , Implantação do Embrião , Transferência Embrionária/estatística & dados numéricos , Taxa de Gravidez , Software , Adulto , Computação em Nuvem , Feminino , Humanos , Gravidez , Estudos Retrospectivos
8.
J Pharmacol Toxicol Methods ; 105: 106895, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32629158

RESUMO

Cardiac and hepatic toxicity result from induced disruption of the functioning of cardiomyocytes and hepatocytes, respectively, which is tightly related to the organization of their subcellular structures. Cellular structure can be analyzed from microscopy imaging data. However, subtle or complex structural changes that are not easily perceived may be missed by conventional image-analysis techniques. Here we report the evaluation of PhenoTox, an image-based deep-learning method of quantifying drug-induced structural changes using human hepatocytes and cardiomyocytes derived from human induced pluripotent stem cells. We assessed the ability of the deep learning method to detect variations in the organization of cellular structures from images of fixed or live cells. We also evaluated the power and sensitivity of the method for detecting toxic effects of drugs by conducting a set of experiments using known toxicants and other methods of screening for cytotoxic effects. Moreover, we used PhenoTox to characterize the effects of tamoxifen and doxorubicin-which cause liver toxicity-on hepatocytes. PhenoTox revealed differences related to loss of cytochrome P450 3A4 activity, for which it showed greater sensitivity than a caspase 3/7 assay. Finally, PhenoTox detected structural toxicity in cardiomyocytes, which was correlated with contractility defects induced by doxorubicin, erlotinib, and sorafenib. Taken together, the results demonstrated that PhenoTox can capture the subtle morphological changes that are early signs of toxicity in both hepatocytes and cardiomyocytes.


Assuntos
Cardiotoxicidade/etiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Antineoplásicos/efeitos adversos , Bioensaio/métodos , Células Cultivadas , Aprendizado Profundo , Doxorrubicina/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Cloridrato de Erlotinib/efeitos adversos , Humanos , Sorafenibe/efeitos adversos , Tamoxifeno/efeitos adversos , Testes de Toxicidade
9.
Stem Cell Reports ; 4(4): 621-31, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25801505

RESUMO

We present a non-invasive method to characterize the function of pluripotent stem-cell-derived cardiomyocytes based on video microscopy and image analysis. The platform, called Pulse, generates automated measurements of beating frequency, beat duration, amplitude, and beat-to-beat variation based on motion analysis of phase-contrast images captured at a fast frame rate. Using Pulse, we demonstrate recapitulation of drug effects in stem-cell-derived cardiomyocytes without the use of exogenous labels and show that our platform can be used for high-throughput cardiotoxicity drug screening and studying physiologically relevant phenotypes.


Assuntos
Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco/citologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Cardiotoxicidade , Técnicas de Cultura de Células , Ensaios de Triagem em Larga Escala , Humanos , Microscopia de Vídeo , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
10.
Artigo em Inglês | MEDLINE | ID: mdl-25333101

RESUMO

Stem cell-derived cardiomyocytes hold tremendous potential for drug development and safety testing related to cardiovascular health. The characterization of cardiomyocytes is most commonly performed using electrophysiological systems, which are expensive, laborious to use, and may induce undesirable cellular response. Here, we present a new method for non-invasive characterization of cardiomyocytes using video microscopy and image analysis. We describe an automated pipeline that consists of segmentation of beating regions, robust beating signal calculation, signal quantification and modeling, and hierarchical clustering. Unlike previous imaging-based methods, our approach enables clinical applications by capturing beating patterns and arrhythmias across healthy and diseased cells with varied densities. We demonstrate the strengths of our algorithm by characterizing the effects of two commercial drugs known to modulate beating frequency and irregularity. Our results provide, to our knowledge, the first clinically-relevant demonstration of a fully-automated and non-invasive imaging-based beating assay for characterization of stem cell-derived cardiomyocytes.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Contraste de Fase/métodos , Microscopia de Vídeo/métodos , Miócitos Cardíacos/citologia , Reconhecimento Automatizado de Padrão/métodos , Células-Tronco/citologia , Inteligência Artificial , Diferenciação Celular , Linhagem Celular , Humanos , Imagem Multimodal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Lab Autom ; 19(5): 454-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24888327

RESUMO

Due to the rapid adoption and use of human induced pluripotent stem cells (iPSCs) in recent years, there is a need for new technologies that standardize the evaluation of iPSCs to allow the objective comparison of results across different experiments and groups. In this article, we present a noninvasive, fully automated, and analytical system for morphology-based evaluation of iPSC cultures that consists of time-lapse microscopy and novel image analysis software. The presented system acquires low-light phase-contrast images of iPSC growth collected during a period of several days in culture, measures geometrical- and texture-based features of iPSC colonies throughout time, and derives a set of six biologically relevant features to automatically rank the quality of the cell culture. In a study of 94 iPSC cultures, we demonstrated the accuracy of the system by comparing the automated ranking with an independent expert evaluation based on visual review of the time-lapse movies. To our knowledge, this is the first demonstration of a fully automated and objective assessment of iPSC culture quality using noninvasive methods.


Assuntos
Automação Laboratorial/instrumentação , Automação Laboratorial/métodos , Técnicas Citológicas/instrumentação , Técnicas Citológicas/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Humanos , Microscopia de Vídeo/instrumentação , Microscopia de Vídeo/métodos
12.
Neuroimage ; 77: 195-206, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23567886

RESUMO

We present a novel approach - DTI-based fiber tract-driven topographical mapping (FTTM) - to map and measure the influence of age on the integrity of interhemispheric fibers and challenge their selective functions with measures of interhemispheric integration of lateralized information. This approach enabled identification of spatially specific topographical maps of scalar diffusion measures and their relation to measures of visuomotor performance. Relative to younger adults, older adults showed lower fiber integrity indices in anterior than posterior callosal fibers. FTTM analysis identified a dissociation in the microstructural-function associates between age groups: in younger adults, genu fiber integrity correlated with interhemispheric transfer time, whereas in older adults, body fiber integrity was correlated with interhemispheric transfer time with topographical specificity along left-lateralized callosal fiber trajectories. Neural co-activation from redundant targets was evidenced by fMRI-derived bilateral extrastriate cortex activation in both groups, and a group difference emerged for a pontine activation cluster that was differently modulated by response hand in older than younger adults. Bilateral processing advantages in older but not younger adults further correlated with fiber integrity in transverse pontine fibers that branch into the right cerebellar cortex, thereby supporting a role for the pons in interhemispheric facilitation. In conclusion, in the face of compromised anterior callosal fibers, older adults appear to use alternative pathways to accomplish visuomotor interhemispheric information transfer and integration for lateralized processing. This shift from youthful associations may indicate recruitment of compensatory mechanisms involving medial corpus callosum fibers and subcortical pathways.


Assuntos
Envelhecimento/patologia , Mapeamento Encefálico/métodos , Encéfalo/patologia , Lateralidade Funcional/fisiologia , Vias Neurais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Encéfalo/fisiologia , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/fisiologia , Adulto Jovem
13.
Artigo em Inglês | MEDLINE | ID: mdl-21995029

RESUMO

We introduce an automated and probabilistic method for subject-specific segmentation of sheet-like fiber tracts. In addition to clustering of trajectories into anatomically meaningful bundles, the method provides statistics of diffusion measures by establishing point correspondences on the estimated medial representation of each bundle. We also introduce a new approach for medial surface generation of sheet-like fiber bundles in order too initialize the proposed clustering algorithm. Applying the new method to a population study of brain aging on 24 subjects demonstrates the capabilities and strengths of the algorithm in identifying and visualizing spatial patterns of group differences.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/patologia , Adulto , Idoso , Envelhecimento , Algoritmos , Análise por Conglomerados , Humanos , Funções Verossimilhança , Modelos Estatísticos , Probabilidade
14.
Med Image Comput Comput Assist Interv ; 11(Pt 1): 917-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18979833

RESUMO

This paper presents a tract-oriented analysis of diffusion tensor (DT) images of the human brain. We demonstrate that unlike the commonly used ROI-based methods for population studies, our technique is sensitive to the local variation of diffusivity parameters along the fiber tracts. We show the strength of the proposed approach in identifying the differences in schizophrenic data compared to controls. Statistically significant drops in fractional anisotropy are observed along the genu and bilaterally in the splenium, as well as an increase in principal eigenvalue in uncinate fasciculus. This is the first tract-oriented clinical study in which an anatomical atlas is used to guide the algorithm.


Assuntos
Inteligência Artificial , Encefalopatias/diagnóstico , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/patologia , Reconhecimento Automatizado de Padrão/métodos , Esquizofrenia/diagnóstico , Algoritmos , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Med Image Anal ; 12(2): 191-202, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18180197

RESUMO

We present a novel approach for joint clustering and point-by-point mapping of white matter fiber pathways. Knowledge of the point correspondence along the fiber pathways is not only necessary for accurate clustering of the trajectories into fiber bundles, but also crucial for any tract-oriented quantitative analysis. We employ an expectation-maximization (EM) algorithm to cluster the trajectories in a gamma mixture model context. The result of clustering is the probabilistic assignment of the fiber trajectories to each cluster, an estimate of the cluster parameters, i.e. spatial mean and variance, and point correspondences. The fiber bundles are modeled by the mean trajectory and its spatial variation. Point-by-point correspondence of the trajectories within a bundle is obtained by constructing a distance map and a label map from each cluster center at every iteration of the EM algorithm. This offers a time-efficient alternative to pairwise curve matching of all trajectories with respect to each cluster center. The proposed method has the potential to benefit from an anatomical atlas of fiber tracts by incorporating it as prior information in the EM algorithm. The algorithm is also capable of handling outliers in a principled way. The presented results confirm the efficiency and effectiveness of the proposed framework for quantitative analysis of diffusion tensor MRI.


Assuntos
Inteligência Artificial , Encéfalo/anatomia & histologia , Análise por Conglomerados , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Funções Verossimilhança , Modelos Biológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Artigo em Inglês | MEDLINE | ID: mdl-21625356

RESUMO

In this work, we describe a white matter trajectory clustering algorithm that allows for incorporating and appropriately weighting anatomical information. The influence of the anatomical prior reflects confidence in its accuracy and relevance. It can either be defined by the user or it can be inferred automatically. After a detailed description of our novel clustering framework, we demonstrate its properties through a set of preliminary experiments.

17.
Proc IEEE Int Symp Biomed Imaging ; 4543943: 105-108, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19212449

RESUMO

We propose a Bayesian approach to incorporate anatomical information in the clustering of fiber trajectories. An expectation-maximization (EM) algorithm is used to cluster the trajectories, in which an atlas serves as the prior on the labels. The atlas guides the clustering algorithm and makes the resulting bundles anatomically meaningful. In addition, it provides the seed points for the tractography and initial settings of the EM algorithm. The proposed approach provides a robust and automated tool for tract-oriented analysis both in a single subject and over a population.

18.
Inf Process Med Imaging ; 20: 372-83, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17633714

RESUMO

A novel framework for joint clustering and point-by-point mapping of white matter fiber pathways is presented. Accurate clustering of the trajectories into fiber bundles requires point correspondence determined along the fiber pathways. This knowledge is also crucial for any tract-oriented quantitative analysis. We employ an expectation-maximization (EM) algorithm to cluster the trajectories in a Gamma mixture model context. The result of clustering is the probabilistic assignment of the fiber trajectories to each cluster, an estimate of the cluster parameters, and point correspondences along the trajectories. Point-by-point correspondence of the trajectories within a bundle is obtained by constructing a distance map and a label map from each cluster center at every iteration of the EM algorithm. This offers a time-efficient alternative to pairwise curve matching of all trajectories with respect to each cluster center. Probabilistic assignment of the trajectories to clusters is controlled by imposing a minimum threshold on the membership probabilities, to remove outliers in a principled way. The presented results confirm the efficiency and effectiveness of the proposed framework for quantitative analysis of diffusion tensor MRI.


Assuntos
Encéfalo/citologia , Imagem de Difusão por Ressonância Magnética/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Fibras Nervosas Mielinizadas/ultraestrutura , Vias Neurais/citologia , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Inteligência Artificial , Análise por Conglomerados , Humanos , Aumento da Imagem/métodos , Modelos Neurológicos , Modelos Estatísticos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
J Neuroimaging ; 15(4 Suppl): 68S-81S, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16385020

RESUMO

Multiple sclerosis (MS), a demyelinating disease, occurs principally in the white matter (WM) of the central nervous system. Conventional magnetic resonance imaging (MRI) is sensitive to some, but not all, brain changes associated with MS. Diffusion-weighted imaging (DWI) provides information about water diffusion in tissue and diffusion tensor MRI (DT-MRI) about fiber direction, allowing for the identification of WM abnormalities that are not apparent on conventional MRI images. These techniques can quantitatively characterize the local microstructure of tissues. MS-associated disease processes lead to regions characterized by an increased amount of water diffusion and a decrease in the anisotropy of diffusion direction. These changes have been found to produce different patterns in MS patients presenting different courses of the disease. Changes in water diffusion may allow examination of the type, appearance, enhancement, and location of lesions not readily visible by other means. Ongoing studies of MS are integrating conventional MRI and DT-MRI measures with connectivity-based regional assessment, aiming to provide a better understanding of the nature and the location of WM lesions. This integration and the development of novel image-processing and visualization techniques may improve the understanding of WM architecture and its disruption in MS. This article presents a brief history of DWI, its basic principles and applications in the study of MS, a review of the properties and applications of DT-MRI, and their use in the study of MS. In addition, this article illustrates the methodology for the analysis of DT-MRI in ongoing studies of MS.


Assuntos
Imagem de Difusão por Ressonância Magnética , Esclerose Múltipla/patologia , Anisotropia , Encéfalo/patologia , Humanos , Processamento de Imagem Assistida por Computador
20.
Comput Biol Med ; 35(9): 791-813, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16278109

RESUMO

This paper presents an image processing approach for information extraction from three-dimensional (3-D) images of vasculature. It extracts quantitative information such as skeleton, length, diameter, and vessel-to-tissue ratio for different vessels as well as their branches. Furthermore, it generates 3-D visualization of vessels based on desired anatomical characteristics such as vessel diameter or 3-D connectivity. Steps of the proposed approach are: (1) pre-processing, (2) distance mappings, (3) branch labeling, (4) quantification, and (5) visualization. We have tested and evaluated the proposed algorithms using simulated images of multi-branch vessels and real confocal microscopic images of the vessels in rat brains. Experimental results illustrate performance of the methods and usefulness of the results for medical image analysis applications.


Assuntos
Vasos Sanguíneos/anatomia & histologia , Microscopia Confocal/métodos , Animais , Encéfalo/irrigação sanguínea , Imageamento Tridimensional , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA