Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Transl Med ; 22(1): 454, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38741158

RESUMO

BACKGROUND: Glycosylation is an enzyme-catalyzed post-translational modification that is distinct from glycation and is present on a majority of plasma proteins. N-glycosylation occurs on asparagine residues predominantly within canonical N-glycosylation motifs (Asn-X-Ser/Thr) although non-canonical N-glycosylation motifs Asn-X-Cys/Val have also been reported. Albumin is the most abundant protein in plasma whose glycation is well-studied in diabetes mellitus. However, albumin has long been considered a non-glycosylated protein due to absence of canonical motifs. Albumin contains two non-canonical N-glycosylation motifs, of which one was recently reported to be glycosylated. METHODS: We enriched abundant serum proteins to investigate their N-linked glycosylation followed by trypsin digestion and glycopeptide enrichment by size-exclusion or mixed-mode anion-exchange chromatography. Glycosylation at canonical as well as non-canonical sites was evaluated by liquid chromatography-tandem mass spectrometry (LC-MS/MS) of enriched glycopeptides. Deglycosylation analysis was performed to confirm N-linked glycosylation at non-canonical sites. Albumin-derived glycopeptides were fragmented by MS3 to confirm attached glycans. Parallel reaction monitoring was carried out on twenty additional samples to validate these findings. Bovine and rabbit albumin-derived glycopeptides were similarly analyzed by LC-MS/MS. RESULTS: Human albumin is N-glycosylated at two non-canonical sites, Asn68 and Asn123. N-glycopeptides were detected at both sites bearing four complex sialylated glycans and validated by MS3-based fragmentation and deglycosylation studies. Targeted mass spectrometry confirmed glycosylation in twenty additional donor samples. Finally, the highly conserved Asn123 in bovine and rabbit serum albumin was also found to be glycosylated. CONCLUSIONS: Albumin is a glycoprotein with conserved N-linked glycosylation sites that could have potential clinical applications.


Assuntos
Glicopeptídeos , Glicoproteínas , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/química , Humanos , Glicopeptídeos/metabolismo , Glicopeptídeos/química , Sequência de Aminoácidos , Espectrometria de Massas em Tandem , Animais , Dados de Sequência Molecular , Albuminas/metabolismo , Bovinos , Cromatografia Líquida
2.
Kidney Int ; 105(5): 1077-1087, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447879

RESUMO

C3 glomerulopathy (C3G) is a rare disease resulting from dysregulation of the alternative pathway of complement. C3G includes C3 glomerulonephritis (C3GN) and dense deposit disease (DDD), both of which are characterized by bright glomerular C3 staining on immunofluorescence studies. However, on electron microscopy (EM), DDD is characterized by dense osmiophilic mesangial and intramembranous deposits along the glomerular basement membranes (GBM), while the deposits of C3GN are not dense. Why the deposits appear dense in DDD and not in C3GN is not known. We performed laser microdissection (LCM) of glomeruli followed by mass spectrometry (MS) in 12 cases each of DDD, C3GN, and pretransplant kidney control biopsies. LCM/MS showed marked accumulation of complement proteins C3, C5, C6, C7, C8, C9 and complement regulating proteins CFHR5, CFHR1, and CFH in C3GN and DDD compared to controls. C3, CFH and CFHR proteins were comparable in C3GN and DDD. Yet, there were significant differences. First, there was a six-to-nine-fold increase of C5-9 in DDD compared to C3GN. Secondly, an unexpected finding was a nine-fold increase in apolipoprotein E (ApoE) in DDD compared to C3GN. Most importantly, immunohistochemical and confocal staining for ApoE mirrored the dense deposit staining in the GBM in DDD but not in C3GN or control cases. Validation studies using 31 C3G cases confirmed the diagnosis of C3GN and DDD in 80.6 % based on ApoE staining. Overall, there is a higher burden of terminal complement pathway proteins in DDD compared to C3GN. Thus, our study shows that dense deposits in DDD are enriched with ApoE compared to C3GN and control cases. Hence, ApoE staining may be used as an adjunct to EM for the diagnosis of DDD and might be valuable when EM is not available.


Assuntos
Glomerulonefrite Membranoproliferativa , Glomerulonefrite , Humanos , Glomerulonefrite Membranoproliferativa/patologia , Glomerulonefrite/patologia , Glomérulos Renais/patologia , Apolipoproteínas E/genética , Apolipoproteínas
3.
J Am Soc Nephrol ; 35(1): 117-128, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37749770

RESUMO

Laser capture microdissection and mass spectrometry (LCM/MS) is a technique that involves dissection of glomeruli from paraffin-embedded biopsy tissue, followed by digestion of the dissected glomerular proteins by trypsin, and subsequently mass spectrometry to identify and semiquantitate the glomerular proteins. LCM/MS has played a crucial role in the identification of novel types of amyloidosis, biomarker discovery in fibrillary GN, and more recently discovery of novel target antigens in membranous nephropathy (MN). In addition, LCM/MS has also confirmed the role for complement proteins in glomerular diseases, including C3 glomerulopathy. LCM/MS is now widely used as a clinical test and considered the gold standard for diagnosis and typing amyloidosis. For the remaining glomerular diseases, LCM/MS has remained a research tool. In this review, we discuss the usefulness of LCM/MS in other glomerular diseases, particularly MN, deposition diseases, and diseases of complement pathways, and advocate more routine use of LCM/MS at the present time in at least certain diseases, such as MN, for target antigen detection. We also discuss the limitations of LCM/MS, particularly the difficulties faced from moving from a research-based technique to a clinical test. Nonetheless, the role of LCM/MS in glomerular diseases is expanding. Currently, LCM/MS may be used to identify the etiology in certain glomerular diseases, but in the future, LCM/MS can play a valuable role in determining pathways of complement activation, inflammation, and fibrosis.


Assuntos
Amiloidose , Glomerulonefrite Membranosa , Nefropatias , Humanos , Nefropatias/patologia , Glomérulos Renais/patologia , Espectrometria de Massas , Microdissecção e Captura a Laser/métodos , Glomerulonefrite Membranosa/metabolismo
4.
Mayo Clin Proc ; 98(11): 1671-1684, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37804268

RESUMO

Membranous nephropathy (MN) is a pattern of injury caused by autoantibodies binding to specific target antigens, with accumulation of immune complexes along the subepithelial region of glomerular basement membranes. The past 20 years have brought revolutionary advances in the understanding of MN, particularly via the discovery of novel target antigens and their respective autoantibodies. These discoveries have challenged the traditional classification of MN into primary and secondary forms. At least 14 target antigens have been identified, accounting for 80%-90% of cases of MN. Many of the forms of MN associated with these novel MN target antigens have distinctive clinical and pathologic phenotypes. The Mayo Clinic consensus report on MN proposes a 2-step classification of MN. The first step, when possible, is identification of the target antigen, based on a multistep algorithm and using a combination of serology, staining of the kidney biopsy tissue by immunofluorescence or immunohistochemistry, and/or mass spectrometry methodology. The second step is the search for a potential underlying disease or associated condition, which is particularly relevant when knowledge of the target antigen is available to direct it. The meeting acknowledges that the resources and equipment required to perform the proposed testing may not be generally available. However, the meeting consensus was that the time has come to adopt an antigen-based classification of MN because this approach will allow for accurate and specific MN diagnosis, with significant implications for patient management and targeted treatment.


Assuntos
Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/terapia , Consenso , Autoanticorpos , Nefrectomia , Fenótipo
5.
Biosci Rep ; 43(10)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37782747

RESUMO

Histone H3 lysine 9 methylation (H3K9me), which is written by the Euchromatic Histone Lysine Methyltransferases EHMT1 and EHMT2 and read by the heterochromatin protein 1 (HP1) chromobox (CBX) protein family, is dysregulated in many types of cancers. Approaches to inhibit regulators of this pathway are currently being evaluated for therapeutic purposes. Thus, knowledge of the complexes supporting the function of these writers and readers during the process of cell proliferation is critical for our understanding of their role in carcinogenesis. Here, we immunopurified each of these proteins and used mass spectrometry to define their associated non-histone proteins, individually and at two different phases of the cell cycle, namely G1/S and G2/M. Our findings identify novel binding proteins for these writers and readers, as well as corroborate known interactors, to show the formation of distinct protein complex networks in a cell cycle phase-specific manner. Furthermore, there is an organizational switch between cell cycle phases for interactions among specific writer-reader pairs. Through a multi-tiered bioinformatics-based approach, we reveal that many interacting proteins exhibit histone mimicry, based on an H3K9-like linear motif. Gene ontology analyses, pathway enrichment, and network reconstruction inferred that these comprehensive EHMT and CBX-associated interacting protein networks participate in various functions, including transcription, DNA repair, splicing, and membrane disassembly. Combined, our data reveals novel complexes that provide insight into key functions of cell cycle-associated epigenomic processes that are highly relevant for better understanding these chromatin-modifying proteins during cell cycle and carcinogenesis.


Assuntos
Histonas , Lisina , Humanos , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Ciclo Celular , Divisão Celular , Carcinogênese , Antígenos de Histocompatibilidade , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
7.
Kidney Int ; 104(6): 1092-1102, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37795587

RESUMO

Membranous nephropathy (MN) is a pattern of injury caused by autoantibodies binding to specific target antigens, with accumulation of immune complexes along the subepithelial region of glomerular basement membranes. The past 20 years have brought revolutionary advances in the understanding of MN, particularly via the discovery of novel target antigens and their respective autoantibodies. These discoveries have challenged the traditional classification of MN into primary and secondary forms. At least 14 target antigens have been identified, accounting for 80%-90% of cases of MN. Many of the forms of MN associated with these novel MN target antigens have distinctive clinical and pathologic phenotypes. The Mayo Clinic consensus report on MN proposes a 2-step classification of MN. The first step, when possible, is identification of the target antigen, based on a multistep algorithm and using a combination of serology, staining of the kidney biopsy tissue by immunofluorescence or immunohistochemistry, and/or mass spectrometry methodology. The second step is the search for a potential underlying disease or associated condition, which is particularly relevant when knowledge of the target antigen is available to direct it. The meeting acknowledges that the resources and equipment required to perform the proposed testing may not be generally available. However, the meeting consensus was that the time has come to adopt an antigen-based classification of MN because this approach will allow for accurate and specific MN diagnosis, with significant implications for patient management and targeted treatment.


Assuntos
Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite Membranosa/terapia , Consenso , Autoanticorpos , Nefrectomia , Membrana Basal Glomerular/patologia , Receptores da Fosfolipase A2
8.
J Am Soc Mass Spectrom ; 34(10): 2087-2092, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37657774

RESUMO

Although tandem mass tag (TMT)-based isobaric labeling has become a powerful approach for multiplexed protein quantitation, automating the workflow for this technique has not been easy to achieve for widespread adoption. This is because preparation of TMT-labeled peptide samples involves multiple steps ranging from protein extraction, denaturation, reduction, and alkylation to tryptic digestion, desalting, labeling, and cleanup, all of which require a high level of proficiency. The variability resulting from multiple processing steps is inherently problematic, especially with large-scale clinical studies that involve hundreds of samples where reproducibility is critical for quantitation. Here, we sought to compare the performance of a recently introduced platform, AccelerOme, for an automated proteomic workflow employing TMT labeling with the manual processing of samples. Cell pellets were prepared and subjected to a 16-plex experiment using an automated platform and a conventional manual protocol. Single-shot liquid chromatography with tandem mass spectrometry analysis revealed a higher number of proteins and peptides identified using the automated platform. Efficiency of tryptic digestion, alkylation, and TMT labeling were similar in both manual and automated processes. In addition, comparison of quantitation accuracy and precision showed similar performance in an automated workflow compared to manual sample preparation by an expert. Overall, we demonstrated that the automated platform performs at a level similar to a manual process performed by an expert for TMT-based proteomics. We anticipate that this automated workflow will increasingly replace manual pipelines and has the potential to be applied to large-scale TMT-based studies, providing robust results and high sample throughput.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Proteínas/química , Peptídeos , Proteoma/análise
9.
Analyst ; 148(15): 3466-3475, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37395315

RESUMO

Although single cell RNA-seq has had a tremendous impact on biological research, a corresponding technology for unbiased mass spectrometric analysis of single cells has only recently become available. Significant technological breakthroughs including miniaturized sample handling have enabled proteome profiling of single cells. Furthermore, trapped ion mobility spectrometry (TIMS) in combination with parallel accumulation-serial fragmentation operated in data-dependent acquisition mode (DDA-PASEF) allowed improved proteome coverage from low-input samples. It has been demonstrated that modulating the ion flux in TIMS affects the overall performance of proteome profiling. However, the effect of TIMS settings on the analysis of low-input samples has been less investigated. Thus, we sought to optimize the conditions of TIMS with regard to ion accumulation/ramp times and ion mobility range for low-input samples. We observed that an ion accumulation time of 180 ms and monitoring a narrower ion mobility range from 0.7 to 1.3 V s cm-2 resulted in a substantial gain in the depth of proteome coverage and in detecting proteins with low abundance. We used these optimized conditions for proteome profiling of sorted human primary T cells, which yielded an average of 365, 804, 1116, and 1651 proteins from single, five, ten, and forty T cells, respectively. Notably, we demonstrated that the depth of proteome coverage from a low number of cells was sufficient to delineate several essential metabolic pathways and the T cell receptor signaling pathway. Finally, we showed the feasibility of detecting post-translational modifications including phosphorylation and acetylation from single cells. We believe that such an approach could be applied to label-free analysis of single cells obtained from clinically relevant samples.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/análise , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Processamento de Proteína Pós-Traducional
10.
Kidney Int Rep ; 8(6): 1213-1219, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284677

RESUMO

Introduction: Membranous nephropathy (MN) is the most common glomerular disease associated with sarcoidosis. The target antigen M-type phospholipase A2 receptor 1 (PLA2R) has been identified in a subset of sarcoidosis-associated MN. The target antigen is not known in the remaining sarcoidosis-associated MN. Methods: Data of patients with history of sarcoidosis and biopsy-proven MN were retrieved and analyzed. Mass spectrometry (MS/MS) was performed on all kidney biopsies of sarcoidosis-associated MN to detect the target antigens. Immunohistochemistry (IHC) studies were performed to confirm and localize the target antigens along the glomerular basement membrane (GBM). Results: Eighteen patients with history of sarcoidosis and biopsy-proven MN were identified, of whom 3 were known to be PLA2R-negative, and in the remaining patients the target antigen was unknown. Thirteen (72%) patients were males; the median age at MN diagnosis was 54.5 years. The median proteinuria at presentation was proteinuria 9.8 g/24 h. Eight patients (44.4%) had concurrent sarcoidosis. Using MS/MS, we detected PLA2R and neural epidermal growth factor-like-1 protein (NELL1) in 7 (46.6%) and 4 (22.2%) patients, respectively. In addition, 1 case each (5.5%) was positive for thrombospondin type 1 domain-containing 7A (THSD7A), protocadherin-7 (PCDH7), and putative antigen Serpin B12. No known target antigen was detected in the remaining 4 patients (22.2%). Conclusion: Patients with sarcoidosis and MN exhibit heterogeneous target antigens. We identified, along with PLA2R, the presence of previously unreported antigens, including NELL1, PCDH7, and THSD7A. The incidence of the target antigens in sarcoidosis appears to mirror the overall incidence of target antigens in MN. MN in sarcoidosis may be the result of a heightened immune response and is not associated with a single target antigen.

11.
J Am Soc Mass Spectrom ; 34(7): 1225-1229, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37267530

RESUMO

Laser capture microdissection (LCM) has become an indispensable tool for mass spectrometry-based proteomic analysis of specific regions obtained from formalin-fixed paraffin-embedded (FFPE) tissue samples in both clinical and research settings. Low protein yields from LCM samples along with laborious sample processing steps present challenges for proteomic analysis without sacrificing protein and peptide recovery. Automation of sample preparation workflows is still under development, especially for samples such as laser-capture microdissected tissues. Here, we present a simplified and rapid workflow using adaptive focused acoustics (AFA) technology for sample processing for high-throughput FFPE-based proteomics. We evaluated three different workflows: standard extraction method followed by overnight trypsin digestion, AFA-assisted extraction and overnight trypsin digestion, and AFA-assisted extraction simultaneously performed with trypsin digestion. The use of AFA-based ultrasonication enables automated sample processing for high-throughput proteomic analysis of LCM-FFPE tissues in 96-well and 384-well formats. Further, accelerated trypsin digestion combined with AFA dramatically reduced the overall processing times. LC-MS/MS analysis revealed a slightly higher number of protein and peptide identifications in AFA accelerated workflows compared to standard and AFA overnight workflows. Further, we did not observe any difference in the proportion of peptides identified with missed cleavages or deamidated peptides across the three different workflows. Overall, our results demonstrate that the workflow described in this study enables rapid and high-throughput sample processing with greatly reduced sample handling, which is amenable to automation.


Assuntos
Ensaios de Triagem em Larga Escala , Proteômica , Humanos , Fluxo de Trabalho , Proteômica/instrumentação , Proteômica/métodos , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/química
13.
Kidney Int ; 104(2): 343-352, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37119877

RESUMO

Drugs are an important secondary cause of membranous nephropathy (MN) with the most common drugs associated with MN being nonsteroidal anti-inflammatory drugs (NSAIDs). Since the target antigen in NSAID-associated MN is not known, we performed laser microdissection of glomeruli followed by mass spectrometry (MS/MS) in 250 cases of PLA2R-negative MN to identify novel antigenic targets. This was followed by immunohistochemistry to localize the target antigen along the glomerular basement membrane and western blot analyses of eluates of frozen biopsy tissue to detect binding of IgG to the novel antigenic target. MS/MS studies revealed high total spectral counts of a novel protein Proprotein Convertase Subtilisin/Kexin Type 6 (PCSK 6) in five of the 250 cases in the discovery cohort. A validation cohort using protein G immunoprecipitation, MS/MS, and immunofluorescence detected PCSK6 in eight additional cases. All cases were negative for known antigens. Ten of 13 cases had a history of heavy NSAID use with no history available in one case. The mean serum creatinine and proteinuria at kidney biopsy were 0.93 ± 0.47 mg/dL and 6.5 ± 3.3 gms/day, respectively. Immunohistochemistry/immunofluorescence showed granular staining for PCSK6 along the glomerular basement membrane, and confocal microscopy showed co-localization of IgG and PCSK6. IgG subclass analysis in three cases revealed codominance of IgG1 and IgG4. Western blot analysis using eluates from frozen tissue showed IgG binding to PCSK6 in PCSK6-associated but not in PLA2R-positive MN. Thus, PCSK6 may be a likely novel antigenic target in MN in patients with prolonged NSAID use.


Assuntos
Glomerulonefrite Membranosa , Humanos , Glomerulonefrite Membranosa/diagnóstico , Espectrometria de Massas em Tandem , Membrana Basal Glomerular/patologia , Imunoglobulina G , Pró-Proteína Convertases , Anti-Inflamatórios , Subtilisinas , Receptores da Fosfolipase A2 , Serina Endopeptidases
14.
J Am Soc Nephrol ; 34(3): 374-384, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857498

RESUMO

SIGNIFICANCE STATEMENT: Syphilis is a common worldwide sexually transmitted infection. Proteinuria may occur in patients with syphilis. Membranous nephropathy (MN) is the most common cause of proteinuria in syphilis. The target antigen of MN in syphilis is unknown. This study shows that MN in syphilis is associated with a novel target antigen called neuron-derived neurotrophic factor (NDNF). NDNF-associated MN has distinctive clinical and pathologic manifestations and NDNF appears to be the target antigen in syphilis-associated MN. BACKGROUND: Syphilis is a common sexually transmitted infection. Membranous nephropathy (MN) is a common cause of proteinuria in syphilis. The target antigen is not known in most cases of syphilis-associated MN. METHODS: We performed laser microdissection of glomeruli and mass spectrometry (MS/MS) in 250 cases (discovery cohort) of phospholipase A2 receptor-negative MN to identify novel target antigens. This was followed by immunohistochemistry/confocal microscopy to localize the target antigen along the glomerular basement membrane (GBM). Western blot analyses using IgG eluted from frozen biopsy tissue were performed to detect binding to target antigen. RESULTS: MS/MS studies of the discovery cohort revealed high total spectral counts of a novel protein, neuron-derived neurotrophic factor (NDNF), in three patients: one each with syphilis and hepatitis B, HIV (syphilis status not known), and lung tumor. Next, MS/MS studies of five cases of syphilis-MN (validation cohort) confirmed high total spectral counts of NDNF (average 45±20.4) in all (100%) cases. MS/MS of 14 cases of hepatitis B were negative for NDNF. All eight cases of NDNF-associated MN were negative for known MN antigens. Electron microscopy showed stage I MN in all cases, with superficial and hump-like deposits without GBM reaction. IgG1 was the dominant IgG subtype on MS/MS and immunofluorescence microscopy. Immunohistochemistry/confocal microscopy showed granular staining and colocalization of NDNF and IgG along GBM. Western blot analyses using eluate IgG of NDNF-MN showed binding to both nonreduced and reduced NDNF, while IgG eluate from phospholipase A2 receptor-MN showed no binding. CONCLUSION: NDNF is a novel antigenic target in syphilis-associated MN.


Assuntos
Glomerulonefrite Membranosa , Hepatite B , Sífilis , Humanos , Receptores da Fosfolipase A2 , Espectrometria de Massas em Tandem , Fatores de Crescimento Neural , Neurônios , Membrana Basal Glomerular , Imunoglobulina G
15.
Mol Neurodegener ; 18(1): 8, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721205

RESUMO

BACKGROUND: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain. Ectopic expression of TREM2-H157Y in HEK293 cells resulted in increased TREM2 shedding. However, the physiological outcomes of the TREM2 H157Y mutation remain unknown in the absence and presence of AD related pathologies. METHODS: We generated a novel Trem2 H157Y knock-in mouse model through CRISPR/Cas9 technology and investigated the effects of Trem2 H157Y on TREM2 proteolytic processing, synaptic function, and AD-related amyloid pathologies by conducting biochemical assays, targeted mass spectrometry analysis of TREM2, hippocampal electrophysiology, immunofluorescent staining, in vivo micro-dialysis, and cortical bulk RNA sequencing. RESULTS: Consistent with previous in vitro findings, Trem2 H157Y increases TREM2 shedding with elevated soluble TREM2 levels in the brain and serum. Moreover, Trem2 H157Y enhances synaptic plasticity without affecting microglial density and morphology, or TREM2 signaling. In the presence of amyloid pathology, Trem2 H157Y accelerates amyloid-ß (Aß) clearance and reduces amyloid burden, dystrophic neurites, and gliosis in two independent founder lines. Targeted mass spectrometry analysis of TREM2 revealed higher ratios of soluble to full-length TREM2-H157Y compared to wild-type TREM2, indicating that the H157Y mutation promotes TREM2 shedding in the presence of Aß. TREM2 signaling was further found reduced in Trem2 H157Y homozygous mice. Transcriptomic profiling revealed that Trem2 H157Y downregulates neuroinflammation-related genes and an immune module correlated with the amyloid pathology. CONCLUSION: Taken together, our findings suggest beneficial effects of the Trem2 H157Y mutation in synaptic function and in mitigating amyloid pathology. Considering the genetic association of TREM2 p.H157Y with AD risk, we speculate TREM2 H157Y in humans might increase AD risk through an amyloid-independent pathway, such as its effects on tauopathy and neurodegeneration which merit further investigation.


Assuntos
Peptídeos beta-Amiloides , Proteínas Amiloidogênicas , Humanos , Animais , Camundongos , Células HEK293 , Encéfalo , Modelos Animais de Doenças , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
16.
Kidney Int ; 103(3): 469-472, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36822753

RESUMO

Membranous nephropathy (MN) is characterized by subepithelial accumulation of immune complexes along the glomerular basement membranes. The immune complexes compromise IgG and the corresponding target antigen. Recent advances have led to the discovery of novel target MN antigens. In this study, by Caza et al., 7 novel "putative" antigens are proposed. Target antigens can now be identified in approximately 90% of cases of MN. In addition to describing another 10 novel putative antigens, we propose a working algorithm for evaluating the target antigens in MN.


Assuntos
Glomerulonefrite Membranosa , Humanos , Complexo Antígeno-Anticorpo , Membrana Basal Glomerular
17.
Autophagy ; 19(6): 1711-1732, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36469690

RESUMO

The ubiquitin (Ub) kinase-ligase pair PINK1-PRKN mediates the degradation of damaged mitochondria by macroautophagy/autophagy (mitophagy). PINK1 surveils mitochondria and upon stress accumulates on the mitochondrial surface where it phosphorylates serine 65 of Ub to activate PRKN and to drive mitochondrial turnover. While loss of either PINK1 or PRKN is genetically linked to Parkinson disease (PD) and activating the pathway seems to have great therapeutic potential, there is no formal proof that stimulation of mitophagy is always beneficial. Here we used biochemical and cell biological methods to study single nucleotide variants in the activation loop of PINK1 to modulate the enzymatic function of this kinase. Structural modeling and in vitro kinase assays were used to investigate the molecular mechanism of the PINK1 variants. In contrast to the PD-linked PINK1G411S mutation that diminishes Ub kinase activity, we found that the PINK1G411A variant significantly boosted Ub phosphorylation beyond levels of PINK1 wild type. This resulted in augmented PRKN activation, mitophagy rates and increased viability after mitochondrial stress in midbrain-derived, gene-edited neurons. Mechanistically, the G411A variant stabilizes the kinase fold of PINK1 and transforms Ub to adopt the preferred, C-terminally retracted conformation for improved substrate turnover. In summary, we identify a critical role of residue 411 for substrate receptivity that may now be exploited for drug discovery to increase the enzymatic function of PINK1. The genetic substitution of Gly411 to Ala increases mitophagy and may be useful to confirm neuroprotection in vivo and might serve as a critical positive control during therapeutic development.Abbreviations: ATP: adenosine triphosphate; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; Ub-CR: ubiquitin with C-terminally retracted tail; CTD: C-terminal domain (of PINK1); ELISA: enzyme-linked immunosorbent assay; HCI: high-content imaging; IB: immunoblot; IF: immunofluorescence; NPC: neuronal precursor cells; MDS: molecular dynamics simulation; PD: Parkinson disease; p-S65-Ub: ubiquitin phosphorylated at Ser65; RMSF: root mean scare fluctuation; TOMM: translocase of outer mitochondrial membrane; TVLN: ubiquitin with T66V and L67N mutation, mimics Ub-CR; Ub: ubiquitin; WT: wild-type.


Assuntos
Doença de Parkinson , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Autofagia , Ubiquitina/metabolismo
18.
ACS Omega ; 7(50): 46260-46276, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570296

RESUMO

Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.

19.
J Biol Chem ; 298(8): 102146, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35716777

RESUMO

Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.


Assuntos
Adenocarcinoma de Células Claras , Neoplasias Ovarianas , Serina Proteases , Adenocarcinoma de Células Claras/enzimologia , Adenocarcinoma de Células Claras/patologia , Feminino , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Serina Proteases/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Tripsina , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
20.
Phytopathology ; 112(5): 1103-1117, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35365054

RESUMO

Promoting seed decay is an ecological approach to reducing weed persistence in the soil seedbank. Previous work demonstrated that Fusarium avenaceum F.a.1 decays dormant Avena fatua (wild oat) caryopses and induces several defense enzyme activities in vitro. The objectives of this study were to obtain a global perspective of proteins expressed after F.a.1-caryopsis colonization by conducting proteomic evaluations on (i) leachates, soluble extrinsic (seed-surface) proteins released upon washing caryopses in buffer and (ii) proteins extracted from whole caryopses; interactions with aluminum (Al) were also evaluated in the latter study because soil acidification and associated metal toxicity are growing problems. Of the 119 leachate proteins classified as defense/stress, 80 were induced or repressed. Defense/stress proteins were far more abundant in A. fatua (35%) than in F.a.1 (12%). Avena defense/stress proteins were also the most highly regulated category, with 30% induced and 35% repressed by F.a.1. Antifungal proteins represented 36% of Avena defense proteins and were the most highly regulated, with 36% induced and 37% repressed by F.a.1. These results implicate selective regulation of Avena defense proteins by F.a.1. Fusarium proteins were also highly abundant in the leachates, with 10% related to pathogenicity, 45% of which were associated with host cell wall degradation. In whole caryopsis extracts, fungal colonization generally resulted in induction of a similar set of Avena proteins in the presence and absence of Al. Results advance the hypothesis that seed decay pathogens elicit intricate and dynamic biochemical responses in dormant seeds.


Assuntos
Avena , Fusarium , Proteínas de Choque Térmico/metabolismo , Doenças das Plantas , Proteoma , Proteômica , Sementes/fisiologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA