Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fluoresc ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457072

RESUMO

Herein, in this report we are introducing newly synthesized chalcone derivative, "(E)-1-phenyl-3-(4-((5-(((Z)-thiophen-2-ylmethylene)amino)-1,3,4-thiadiazol-2-yl)thio)phenyl)prop-2-en-1-one" (5), as a chemosensor to detect Fe2+ metal ions in HEPES buffer solution of pH 7.5. Spectroscopic techniques were used to confirm the synthesized sensor. To determine the chemical reactivity and molecular stability of the probe, a frontier molecular orbitals investigation was carried out. A molecular electrostatic potential map was investigated to know the binding site of 5 for metal ion coordination. The theoretical absorption and fluorescence emission properties were estimated and correlated with the experimental observations. The sensor showed excellent selectivity for Fe2+ compared to all other studied metal ions. The fluorescence binding studies were carried out by adding different amounts of Fe2+ ions for a fixed concentration of probe 5. The inclusion of Fe2+ ions resulted in a decrease in fluorescence intensity with a bathochromic shift of emission wavelength of 5 due to the 5-Fe2+ complexation. The binding affinity value for the probe was found to be 576.2 M-1 with the help of the Stern-Volmer plot. The Job's plot and mass spectra supported the 2:1 (5: Fe2+) stoichiometry of complex formation. The detection limit and limit of quantification of 5 for Fe2+ were calculated to be 4.79 × 10-5 M and 14.54 × 10-5 M. Further, in addition to this, the photophysical parameters such as fluorescence lifetime of 5 and 5-Fe2+ complex measured to be 0.1439 and 0.1574 ns. The quantum yield of 5 and 5-Fe2+ was found to be 0.0398 and 0.0376. All these experimental findings revealed that probe 5 has excellent selectivity and sensitivity for Fe2+ ions.

2.
Biomedicines ; 11(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37371757

RESUMO

Nuclear factor kappa beta (NF-κB) is a transcriptional factor that plays a crucial role in regulating cancer cell proliferation. Therefore, the inhibition of NF-κB activity by small molecules may be beneficial in cancer therapy. In this report, methyl-thiol-bridged oxadiazole and triazole heterocycles were synthesized via click chemistry and it was observed that the lead structure, 2-(((1-(3,4-dichlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)thio)-5-(4-methoxybenzyl)-1,3,4-oxadiazole (4c), reduced the viability of MCF-7 cells with an IC50 value of 7.4 µM. Compound 4c also caused concentration-dependent loss of cell viability in chronic myelogenous leukemia (CML) cells. Furthermore, compound 4c inhibited the activation of NF-κB in human CML cells as observed by nuclear translocation and DNA binding assays. Functionally, compound 4c produced PARP cleavage and also suppressed expression of Bcl-2/xl, MMP-9, COX-2, survivin, as well as VEGF, resulting in apoptosis of CML cells. Moreover, ChIP assay showed that compound 4c decreased the binding of COX-2 to the p65 gene promoter. Detailed in silico analysis also indicated that compound 4c targeted NF-κB in CML cells. In conclusion, a novel structure bearing both triazole and oxadiazole moieties has been identified that can target NF-κB in CML cells and may constitute a potential novel drug candidate.

3.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110684

RESUMO

Human epidermal growth factor receptor 2 (HER2)-positive breast cancer exhibits early relapses, poor prognoses, and high recurrence rates. Herein, a JNK-targeting compound has been developed that may be of utility in HER2-positive mammary carcinoma. The design of a pyrimidine-and coumarin-linked structure targeting JNK was explored and the lead structure PC-12 [4-(3-((2-((4-chlorobenzyl)thio) pyrimidin-4-yl)oxy)propoxy)-6-fluoro-2H-chromen-2-one (5d)] was observed to selectively inhibit the proliferation of HER2-positive BC cells. The compound PC-12 exerted DNA damage and induced apoptosis in HER-2 positive BC cells more significantly compared to HER-2 negative BC cells. PC-12 induced PARP cleavage and down-regulated the expression of IAP-1, BCL-2, SURVIVIN, and CYCLIN D1 in BC cells. In silico and theoretical calculations showed that PC-12 could interact with JNK, and in vitro studies demonstrated that it enhanced JNK phosphorylation through ROS generation. Overall, these findings will assist the discovery of new compounds targeting JNK for use in HER2-positive BC cells.


Assuntos
Apoptose , Neoplasias da Mama , Humanos , Feminino , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Cumarínicos/farmacologia , Pirimidinas , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral
4.
Bioengineering (Basel) ; 10(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829653

RESUMO

In breast cancer (BC), STAT3 is hyperactivated. This study explored the design of imidazopyridine-tethered pyrazolines as a de novo drug strategy for inhibiting STAT3 phosphorylation in human BC cells. This involved the synthesis and characterization of two series of compounds namely, 1-(3-(2,6-dimethylimidazo [1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)-2-(4-(substituted)piperazin-1-yl)ethanone and N-substituted-3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazoline-1-carbothioamides. Compound 3f with 2,3-dichlorophenyl substitution was recognized among the tested series as a lead structure that inhibited the viability of MCF-7 cells with an IC50 value of 9.2 µM. A dose- and time-dependent inhibition of STAT3 phosphorylation at Tyr705 and Ser727 was observed in MCF-7 and T47D cells when compound 3f was added in vitro. Calculations using density functional theory showed that the title compounds HOMOs and LUMOs are situated on imidazopyridine-pyrazoline and nitrophenyl rings, respectively. Hence, compound 3f effectively inhibited STAT3 phosphorylation in MCF-7 and T47D cells, indicating that these structures may be an alternative synthon to target STAT3 signaling in BC.

5.
Biomedicines ; 11(1)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36672680

RESUMO

Small molecules are being used to inhibit cyclin dependent kinase (CDK) enzymes in cancer treatment. There is evidence that CDK is a drug-target for cancer therapy across many tumor types because it catalyzes the transfer of the terminal phosphate of ATP to a protein that acts as a substrate. Herein, the identification of pyranopyrazoles that were CDK inhibitors was attempted, whose synthesis was catalyzed by nano-zirconium dioxide via multicomponent reaction. Additionally, we performed an in-situ analysis of the intermediates of multicomponent reactions, for the first-time, which revealed that nano-zirconium dioxide stimulated the reaction, as estimated by Gibbs free energy calculations of spontaneity. Functionally, the novel pyranopyrazoles were tested for a loss of cell viability using human breast cancer cells (MCF-7). It was observed that compounds 5b and 5f effectively produced loss of viability of MCF-7 cells with IC50 values of 17.83 and 23.79 µM, respectively. In vitro and in silico mode-of-action studies showed that pyranopyrazoles target CDK1 in human breast cancer cells, with lead compounds 5b and 5f having potent IC50 values of 960 nM and 7.16 µM, respectively. Hence, the newly synthesized bioactive pyranopyrazoles could serve as better structures to develop CDK1 inhibitors against human breast cancer cells.

6.
Molecules ; 27(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35566199

RESUMO

A number of uracil amides cleave poly (ADP-ribose) polymerase and therefore novel thiouracil amide compounds were synthesized and screened for the loss of cell viability in a human-estrogen-receptor-positive breast cancer cell line. The synthesized compounds exhibited moderate to significant efficacy against human breast cancer cells, where the compound 5e IC50 value was found to be 18 µM. Thouracil amide compounds 5a and 5e inhibited the catalytical activity of PARP1, enhanced cleavage of PARP1, enhanced phosphorylation of H2AX, and increased CASPASE 3/7 activity. Finally, in silico analysis demonstrated that compound 5e interacted with PARP1. Hence, specific thiouracil amides may serve as new drug-seeds for the development of PARP inhibitors for use in oncology.


Assuntos
Neoplasias da Mama , Poli(ADP-Ribose) Polimerases , Difosfato de Adenosina , Amidas , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Humanos , Piperazina , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ribose , Tiouracila
7.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34681659

RESUMO

The design and development of a small molecule named NPB [3-{(4(2,3-dichlorophenyl)piperazin-1-yl}{2-hydroxyphenyl)methyl}-N-cyclopentylbenzamide], which specifically inhibited the phosphorylation of BAD at Ser99 in human carcinoma cells has been previously reported. Herein, the synthesis, characterization, and effect on cancer cell viability of NPB analogs, and the single-crystal X-ray crystallographic studies of an example compound (4r), which was grown via slow-solvent evaporation technique is reported. Screening for loss of viability in mammary carcinoma cells revealed that compounds such as 2[(4(2,3-dichlorophenyl)piperazin-1-yl][naphthalen-1-yl]methyl)phenol (4e), 5[(4(2,3-dichlorophenyl)piperazin-1-yl][2-hydroxyphenyl)methyl)uran-2-carbaldehyde (4f), 3[(2-hydroxyphenyl][4(p-tolyl)piperazin-1-yl)methyl)benzaldehyde (4i), and NPB inhibited the viability of MCF-7 cells with IC50 values of 5.90, 3.11, 7.68, and 6.5 µM, respectively. The loss of cell viability was enhanced by the NPB analogs synthesized by adding newer rings such as naphthalene and furan-2-carbaldehyde in place of N-cyclopentyl-benzamide of NPB. Furthermore, these compounds decreased Ser99 phosphorylation of hBAD. Additional in silico density functional theory calculations suggested possibilities for other analogs of NPB that may be more suitable for further development.


Assuntos
Nitrobenzenos/química , Proteína de Morte Celular Associada a bcl/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Teoria da Densidade Funcional , Feminino , Humanos , Células MCF-7 , Conformação Molecular , Nitrobenzenos/farmacologia , Fosforilação/efeitos dos fármacos , Serina/metabolismo
8.
J Fluoresc ; 31(6): 1683-1703, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34417944

RESUMO

Carbohydrate sensing in an aqueous solution remains a very challenging area of interest. Using the idea of covalent reversible interaction between boronic acids and the diol groups in carbohydrates enable us to design a carbohydrate sensor 1-thianthrenylboronic acid (1T), which has high selectivity towards fructose. To elucidate the sensing and binding properties of 1T with sugars, we have incorporated theoretical (DFT and TD-DFT) and spectroscopic techniques. For an optimized geometry, the complete vibrational assignments were done with FT-IR and FT-Raman spectra. Physiochemical parameters were obtained by implementing frontier molecular orbital (FMO) analysis. Further, excited state properties were determined by performing TD-DFT calculations in solvent and these properties were in good agreement with the experiment. The steady state fluorescence measurements with varying concentration of sugars, revealed that the fluorescence intensity of boronic acid is enhanced by studied sugars due to the structural modification. We also noticed remarkable changes in fluorescence lifetimes and quantum yield after adding sugars. The article also reports influence of pH on boronic acid's fluorescence intensity with and without sugars. The fluorescence of boronic acid increases with the increase in pH. These changes are due to acid-base equilibrium of boronic acid and led us to estimate the pKa value of 7.6. All the theoretical and experimental evidences suggested that 1T can be used as a possible fluorescent sensor for fructose. In addition, 1T showed very good affinity for Cu2+ ion with Ka = 150 × 102 M-1, which suggests that 1T can also be used as a chemosensor for Cu2+ ions.

9.
Bioinformation ; 17(3): 393-403, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34092960

RESUMO

It is of interest to document the design, synthesis, docking, Hirshfeld surface analysis and DFT calculations of 2-methylxanthen-9-with the FtsZ protein (PDB ID: 3VOB) from Staphylococcus aureus for antimicrobial applications. We report the quantitative structure function data in this context.

10.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 11): 1620-1626, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709079

RESUMO

The title imidazo[1,2-a] pyridine derivative, C13H8Br2N2, was synthesized via a single-step reaction method. The title mol-ecule is planar, showing a dihedral angle of 0.62 (17)° between the phenyl and the imidazo[1,2-a] pyridine rings. An intra-molecular C-H⋯N hydrogen bond with an S(5) ring motif is present. In the crystal, a short H⋯H contact links adjacent mol-ecules into inversion-related dimers. The dimers are linked in turn by weak C-H⋯π and slipped π-π stacking inter-actions, forming layers parallel to (110). The layers are connected into a three-dimensional network by short Br⋯H contacts. Two-dimensional fingerprint plots and three-dimensional Hirshfeld surface analysis of the inter-molecular contacts reveal that the most important contributions for the crystal packing are from H⋯Br/Br⋯H (26.1%), H⋯H (21.7%), H⋯C/C⋯H (21.3%) and C⋯C (6.5%) inter-actions. Energy framework calculations suggest that the contacts formed between mol-ecules are largely dispersive in nature. Analysis of HOMO-LUMO energies from a DFT calculation reveals the pure π character of the aromatic rings with the highest electron density on the phenyl ring, and σ character of the electron density on the Br atoms. The HOMO-LUMO gap was found to be 4.343 eV.

11.
Photochem Photobiol ; 94(2): 261-276, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29105763

RESUMO

A series of novel coumarin pyrazoline moieties combined with tetrazoles, 3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one, 6-chloro-3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one, 6-bromo-3-(1-phenyl-4-(1H-tetrazol-5-yl)-1H-pyrazol-3-yl)-2H-chromen-2-one and 6-bromo-3-(1-(4-bromophenyl)-4-(1H-tetrazol-5-yl)-1H pyrazol-3-yl)-2H-chromen-2-one7(a-d), were designed and synthesized. Single crystal X-ray diffraction and their interactions were studied by Hirshfeld surface analysis. Thermal stabilities and electrochemical properties of these compounds were examined from differential scanning calorimetry (DSC), thermogravimetric (TGA) and cyclic voltammetric (CV) studies. Their spectroscopic properties were analyzed in various alcohols and general solvents by UV-Vis absorption, fluorescence and time-resolved spectroscopy. In addition, the ground and excited state electronic properties were investigated using density functional theory (DFT). The calculated highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) and energy band gap (Eg ) values have revealed the effect of substitution of halogens. The substitution has equally affected the ground and excited states of 7(a-d) compounds. The solvatochromism on absorption, fluorescence spectra and fluorescence lifetimes of these compounds was investigated. All these results showed the chromen-2-one of pyrazoline tetrazole derivatives could play an important role in photonic and electronic devices.

12.
Chem Res Toxicol ; 28(12): 2419-25, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26577531

RESUMO

Arsenic is the most ubiquitous environmental toxin and carcinogen. Long-term exposure to arsenic is associated with human diseases including cancer, cardiovascular disease, and diabetes. Human As(III) S-adenosylmethionine (SAM) methyltransferases (hAS3MT) methylates As(III) to trivalent mono- and dimethyl species that are more toxic and potentially more carcinogenic than inorganic arsenic. Modulators of hAS3MT activity may be useful for the prevention or treatment of arsenic-related diseases. Using a newly developed high-throughput assay for hAS3MT activity, we identified 10 novel noncompetitive small molecule inhibitors. In silico docking analysis with the crystal structure of an AS3MT orthologue suggests that the inhibitors bind in a cleft between domains that is distant from either the As(III) or SAM binding sites. This suggests the presence of a possible allosteric and regulatory site in the enzyme. These inhibitors may be useful tools for future research in arsenic metabolism and are the starting-point for the development of drugs against hAS3MT.


Assuntos
Arsênio , Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina , Bibliotecas de Moléculas Pequenas/farmacologia , Arsênio/química , Sítios de Ligação , Bioensaio , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Metiltransferases/química , Simulação de Acoplamento Molecular , S-Adenosilmetionina/química , Bibliotecas de Moléculas Pequenas/química
13.
Mol Microbiol ; 98(4): 625-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26234817

RESUMO

Trivalent organoarsenic compounds are far more toxic than either pentavalent organoarsenicals or inorganic arsenite. Many microbes methylate inorganic arsenite (As(III)) to more toxic and carcinogenic methylarsenite (MAs(III)). Additionally, monosodium methylarsenate (MSMA or MAs(V)) has been used widely as an herbicide and is reduced by microbial communities to MAs(III). Roxarsone (3-nitro-4-hydroxybenzenearsonic acid) is a pentavalent aromatic arsenical that is used as antimicrobial growth promoter for poultry and swine, and its active form is the trivalent species Rox(III). A bacterial permease, ArsP, from Campylobacter jejuni, was recently shown to confer resistance to roxarsone. In this study, C. jejuni arsP was expressed in Escherichia coli and shown to confer resistance to MAs(III) and Rox(III) but not to inorganic As(III) or pentavalent organoarsenicals. Cells of E. coli expressing arsP did not accumulate trivalent organoarsenicals. Everted membrane vesicles from those cells accumulated MAs(III) > Rox(III) with energy supplied by NADH oxidation, reflecting efflux from cells. The vesicles did not transport As(III), MAs(V) or pentavalent roxarsone. Mutation or modification of the two conserved cysteine residues resulted in loss of transport activity, suggesting that they play a role in ArsP function. Thus, ArsP is the first identified efflux system specific for trivalent organoarsenicals.


Assuntos
Arsenitos/metabolismo , Campylobacter jejuni/enzimologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Antibacterianos/farmacologia , Arseniatos/metabolismo , Arsenicais/metabolismo , Arsenicais/farmacologia , Arsenitos/farmacologia , Campylobacter jejuni/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes/metabolismo , Roxarsona/química , Roxarsona/farmacologia , Reagentes de Sulfidrila/metabolismo
14.
Bioorg Med Chem Lett ; 25(15): 2931-6, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048794

RESUMO

In the present study, we used solution combustion synthesis-bismuth oxide (Bi2O3) as catalyst for the simple and efficient synthesis of 1,2-oxazine based derivatives of 6-fluoro-3-(piperidin-4-yl)benzo[d]isoxazoles, 1-arylpiperazine and carbazoles. (4aR,8aR)-4-(4-Methoxyphenyl)-3-((4-(4-methoxyphenyl)piperazin-1-yl)methyl)-4a,5,6,7,8,8a-hexahydro-4H-benzo[e][1,2]oxazine was found to be the most potent compound with a high degree of selectivity in inhibition towards COX2 (1.7 µM) over COX1 (40.4 µM) demonstrating the significance of 1,2-oxazine derivatives in developing COX2 specific inhibitors. Molecular docking analyses demonstrated that an isoleucine residue in the active site of COX1 is responsible for lower affinity to COX1 and increased potency towards COX2. Overall, our study reveals that the new 1,2-oxazine-based small molecules qualify as lead structures in developing COX2-specific inhibitors for anti-inflammatory therapy.


Assuntos
Inibidores de Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/imunologia , Oxazinas/química , Oxazinas/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Ciclo-Oxigenase 2/química , Inibidores de Ciclo-Oxigenase 2/síntese química , Humanos , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Inflamação/imunologia , Simulação de Acoplamento Molecular , Oxazinas/síntese química
15.
Bioinformation ; 10(7): 413-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25187680

RESUMO

Tyrosine kinase receptor and protein kinases drawn much attention for the scientific fraternity in drug discovery due to its important role in different cancer, cardiovascular diseases and other hyper-proliferative disorders. Docking studies of pyrazole derivatives with tyrosine kinase and different serine/threonine protein kinases were employed by using flexible ligand docking approach of AutoDock 4.2. Among the molecules tested for docking study, 2-(4-chlorophenyl)-5-(3-(4-chlorophenyl)-5-methyl-1- phenyl-1H-pyrazol-4-yl)-1,3,4-thiadiazole (1b), 2-(4-methoxyphenyl)-5-(3-(4-methoxyphenyl)-5-methyl-1-phenyl-1H-pyrazol-4-yl)- 1,3,4-thiadiazole (1d) and 2-(4-chlorophenyl)-5-(3-(4-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazol-4-yl)-1,3,4-thiadiazole (2b) revealed minimum binding energy of -10.09, -8.57 and -10.35 kJ/mol with VEGFR-2 (2QU5), Aurora A (2W1G) and CDK2 (2VTO) protein targets, respectively. These proteins are representatives of plausible models of interactions with different anticancer agents. All the ligands were docked deeply within the binding pocket region of all the three proteins, showing reasonable hydrogen bonds. The docking study results showed that these pyrazole derivatives are potential inhibitor of all the three protein targets; and also all these docked compounds have good inhibition constant, vdW + Hbond + desolv energy with best RMSD value.

16.
Bioinformation ; 10(5): 288-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24966536

RESUMO

Protein kinases are important drug targets in human cancers, inflammation and metabolic diseases. Docking studies was performed for all the benzimidazopyrimidine and coumarin substituted benzimidazopyridimine derivatives with human Aurora A kinase target (3FDN) employing flexible ligand docking approach by using AutoDock 4.2. All the compounds were found to have minimum binding energy ranging from -6.26 to -9.29 kJ/mol. Among the molecules tested for docking study, 10-(6-Bromo-2-oxo- 2H-chromen-4-ylmethyl)-2-isopropyl-10H-benzo[4,5]imidazo[1,2-a]pyrimidin-4-one (2k) showed minimum binding energy (-9.29 kJ/mol) with ligand efficiency of -0.31. All the ligands were docked deeply within the binding pocket region of 3FDN showing hydrogen bonds with Ala 213 and Asn 261. The docking study results showed that these derivatives are excellent inhibitor of human Aurora A kinase target; and also all these docked compounds have good inhibition constant, vdW + Hbond + desolv energy with best RMSD value.

17.
Proteins ; 71(2): 534-40, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18175317

RESUMO

Bacillus cereus Hemolysin BL enterotoxin, a ternary complex of three proteins, is the causative agent of food poisoning and requires all three components for virulence. The X-ray structure of the binding domain of HBL suggests that it may form a pore similar to other soluble channel forming proteins. A putative pathway of pore formation is discussed.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Proteínas Hemolisinas/química , Sequência de Aminoácidos , Bacillus cereus/química , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Alinhamento de Sequência
18.
J Struct Funct Genomics ; 8(2-3): 121-40, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18058037

RESUMO

The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.


Assuntos
Genômica , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Animais , Cristalografia por Raios X , Humanos , Família Multigênica , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/fisiologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA