Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 5(13)2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641580

RESUMO

Glaucoma surgeries, such as trabeculectomy, are performed to lower intraocular pressure to reduce risk of vision loss. These surgeries create a new passage in the eye that reroutes the aqueous humor outflow to the subconjunctival space, where the fluid is presumably absorbed by the conjunctival lymphatics. Here, we characterized the development and function of the ocular lymphatics using transgenic lymphatic reporter mice and rats. We found that the limbal and conjunctival lymphatic networks are progressively formed from a primary lymphatic vessel that grows from the nasal-side medial canthus region at birth. This primary lymphatic vessel immediately branches out, invades the limbus and conjunctiva, and bidirectionally encircles the cornea. As a result, the distribution of the ocular lymphatics is significantly polarized toward the nasal side, and the limbal lymphatics are directly connected to the conjunctival lymphatics. New lymphatic sprouts are produced mainly from the nasal-side limbal lymphatics, posing the nasal side of the eye as more responsive to fluid drainage and inflammatory stimuli. Consistent with this polarized distribution of the ocular lymphatics, a higher drainage efficiency was observed in the nasal side than the temporal side of the eye when injected with a fluorescent tracer. In contrast, blood vessels are evenly distributed at the anterior surface of the eyes. Also, we found that these distinct vascular distribution patterns were conserved in human eyes. Together, our study demonstrated that the ocular surface lymphatics are more densely present in the nasal side and uncovered the potential clinical benefits in selecting the nasal side as a glaucoma surgery site to improve fluid drainage.


Assuntos
Túnica Conjuntiva/patologia , Sistema Linfático/patologia , Vasos Linfáticos/patologia , Organogênese/fisiologia , Animais , Humor Aquoso/metabolismo , Pressão Intraocular/fisiologia , Camundongos Transgênicos , Ratos Sprague-Dawley
2.
Cancer Res ; 80(15): 3130-3144, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32518204

RESUMO

Kaposi sarcoma is the most common cancer in human immunodeficiency virus-positive individuals and is caused by Kaposi sarcoma-associated herpesvirus (KSHV). It is believed that a small number of latently infected Kaposi sarcoma tumor cells undergo spontaneous lytic reactivation to produce viral progeny for infection of new cells. Here, we use matched donor-derived human dermal blood and lymphatic endothelial cells (BEC and LEC, respectively) to show that KSHV-infected BECs progressively lose viral genome as they proliferate. In sharp contrast, KSHV-infected LECs predominantly entered lytic replication, underwent cell lysis, and released new virus. Continuous lytic cell lysis and de novo infection allowed LEC culture to remain infected for a prolonged time. Because of the strong propensity of LECs toward lytic replication, LECs maintained virus as a population, despite the death of individual host cells from lytic lysis. The master regulator of lymphatic development, Prox1, bound the promoter of the RTA gene to upregulate its expression and physically interacted with RTA protein to coregulate lytic genes. Thus, LECs may serve as a proficient viral reservoir that provides viral progeny for continuous de novo infection of tumor origin cells, and potentially BECs and mesenchymal stem cells, which give rise to Kaposi sarcoma tumors. Our study reveals drastically different host cell behaviors between BEC and LEC and defines the underlying mechanisms of the lymphatic cell environment supporting persistent infection in Kaposi sarcoma tumors. SIGNIFICANCE: This study defines the mechanism by which Kaposi's sarcoma could be maintained by virus constantly produced by lymphatic cells in HIV-positive individuals.


Assuntos
Herpesvirus Humano 8/fisiologia , Proteínas de Homeodomínio/fisiologia , Vasos Linfáticos/virologia , Sarcoma de Kaposi , Microambiente Tumoral/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Liberação de Vírus/genética , Replicação Viral/genética , Transformação Celular Viral/genética , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Células HEK293 , HIV/fisiologia , Humanos , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Latência Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA