Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5871, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735473

RESUMO

The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.


Assuntos
Leucemia , Fatores de Transcrição , Animais , Masculino , Camundongos , Proteínas Correpressoras , Regulação da Expressão Gênica , Genes Reguladores
2.
Blood ; 139(3): 399-412, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34624096

RESUMO

Mixed-phenotype acute leukemia is a rare subtype of leukemia in which both myeloid and lymphoid markers are co-expressed on the same malignant cells. The pathogenesis is largely unknown, and the treatment is challenging. We previously reported the specific association of the recurrent t(8;12)(q13;p13) chromosomal translocation that creates the ETV6-NCOA2 fusion with T/myeloid leukemias. Here we report that ETV6-NCOA2 initiates T/myeloid leukemia in preclinical models; ectopic expression of ETV6-NCOA2 in mouse bone marrow hematopoietic progenitors induced T/myeloid lymphoma accompanied by spontaneous Notch1-activating mutations. Similarly, cotransduction of human cord blood CD34+ progenitors with ETV6-NCOA2 and a nontransforming NOTCH1 mutant induced T/myeloid leukemia in immunodeficient mice; the immunophenotype and gene expression pattern were similar to those of patient-derived ETV6-NCOA2 leukemias. Mechanistically, we show that ETV6-NCOA2 forms a transcriptional complex with ETV6 and the histone acetyltransferase p300, leading to derepression of ETV6 target genes. The expression of ETV6-NCOA2 in human and mouse nonthymic hematopoietic progenitor cells induces transcriptional dysregulation, which activates a lymphoid program while failing to repress the expression of myeloid genes such as CSF1 and MEF2C. The ETV6-NCOA2 induced arrest at an early immature T-cell developmental stage. The additional acquisition of activating NOTCH1 mutations transforms the early immature ETV6-NCOA2 cells into T/myeloid leukemias. Here, we describe the first preclinical model to depict the initiation of T/myeloid leukemia by a specific somatic genetic aberration.


Assuntos
Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide/genética , Coativador 2 de Receptor Nuclear/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Animais , Transformação Celular Neoplásica , Células Cultivadas , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Variante 6 da Proteína do Fator de Translocação ETS
3.
Front Oncol ; 11: 637482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178626

RESUMO

As treatment protocols for medulloblastoma (MB) are becoming subgroup-specific, means for reliably distinguishing between its subgroups are a timely need. Currently available methods include immunohistochemical stains, which are subjective and often inconclusive, and molecular techniques-e.g., NanoString, microarrays, or DNA methylation assays-which are time-consuming, expensive and not widely available. Quantitative PCR (qPCR) provides a good alternative for these methods, but the current NanoString panel which includes 22 genes is impractical for qPCR. Here, we applied machine-learning-based classifiers to extract reliable, concise gene sets for distinguishing between the four MB subgroups, and we compared the accuracy of these gene sets to that of the known NanoString 22-gene set. We validated our results using an independent microarray-based dataset of 92 samples of all four subgroups. In addition, we performed a qPCR validation on a cohort of 18 patients diagnosed with SHH, Group 3 and Group 4 MB. We found that the 22-gene set can be reduced to only six genes (IMPG2, NPR3, KHDRBS2, RBM24, WIF1, and EMX2) without compromising accuracy. The identified gene set is sufficiently small to make a qPCR-based MB subgroup classification easily accessible to clinicians, even in developing, poorly equipped countries.

4.
NPJ Aging Mech Dis ; 4: 9, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181898

RESUMO

One of the major pathological outcomes of DNA damage during aging or anticancer therapy is enhanced inflammation. However, the underlying signaling mechanism that drives this is not well understood. Here, we show that in response to DNA damage, ubiquitously expressed GPCR, CXCR4 is upregulated through the ATM kinase-HIF1α dependent DNA damage response (DDR) signaling, and enhances inflammatory response when activated by its ligand, chemokine CXCL12. A pharmacologically active compound screen revealed that this increased inflammation is dependent on reduction in cAMP levels achieved through activation of Gαi through CXCR4 receptor and PDE4A. Through in vivo analysis in mice where DNA damage was induced by irradiation, we validated that CXCR4 is induced systemically after DNA damage and inhibition of its activity or its induction blocked inflammation as well as tissue injury. We thus report a unique DNA damage-linked inflammatory cascade, which is mediated by expression level changes in a GPCR and can be targeted to counteract inflammation during anticancer therapies as well as aging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA