Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Biomed Eng ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097809

RESUMO

Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.

4.
JSES Open Access ; 3(3): 225-231, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31709367

RESUMO

BACKGROUND: The distal biceps tendon externally rotates from proximal to distal before inserting onto the radius. Our hypothesis is that an externally rotated (anatomic) repair would re-create native supination moment arm and flexion force, whereas an internally rotated (nonanatomic) repair would result in reduced force transmission. METHODS: The mechanical tests performed in this study measured isometric moment arms and elbow flexion force using a validated elbow simulator as previously published. Mechanical testing was performed on 8 native cadaveric elbows (61 ± 15 years). The distal biceps tendons in all specimens were then incised from their footprint and repaired with anatomic and nonanatomic tendon rotations. After each repair, the specimens were retested. The repair sequence was randomly assigned. RESULTS: Gross observation showed repair site bunching with the nonanatomic repairs. There was no statistical difference in the moment arms between the native, anatomic, and nonanatomic rotations for the 3 forearm angles (P ≥ .352). Analysis showed no statistical difference in flexion force ratio for the elbow at 90° (P ≥ .283). DISCUSSION: The study showed that biceps tendon rotation does not play a role in supination moment arm or flexion force. Twisting the distal biceps tendon around the tendon axis does not change the direction of its applied force on the tuberosity. Tendon bunching in nonanatomic reattachments increases repair site width, which may lead to tendon-ulnar impingement during forearm rotation.

5.
J Shoulder Elbow Surg ; 28(4): 757-764, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30595503

RESUMO

BACKGROUND: Clinical and functional impairment after nonoperative treatment of distal biceps ruptures is not well understood. The goal of this study was to measure patients' perceived disability, kinematic adjustment, and forearm supination power after nonoperative treatment of distal biceps ruptures. METHODS: Fourteen individuals after nonoperative treatment of distal biceps ruptures were matched to a control group of 18 uninjured volunteers. Both groups prospectively completed the Disabilities of the Arm, Shoulder and Hand (DASH), Single Assessment Numerical Evaluation (SANE), and Biceps Disability Questionnaire. Both performed a new timed isotonic supination test that was designed to simulate activities of daily life. The isotonic torque dynamometer measures the supination arc, center of supination arc, torque, angular velocity, and power. Motion analysis quantifies forearm and shoulder contributions to the arc of supination. RESULTS: The nonoperative treated group's DASH (23.2 ± 10.3) and SANE (59.6 ± 16.2) scores demonstrated a clinical meaningful impairment. The control group showed no significant differences in kinematic values between dominant and nondominant arms (P = .854). The nonoperative biceps ruptured arms, compared with their uninjured arms, changed supination motion by decreasing the supination arc (P ≤ .036), shifting the center of supination arc to a more pronated position (P ≤ .030), and increasing the shoulder contribution to rotation (P ≤ .001); despite this adaptation, their average corrected power of supination decreased by 47% (P = .001). CONCLUSION: Patients should understand that nonoperative treatment for distal biceps ruptures will result in varying degrees of functional loss as measured by the DASH, SANE, and Biceps Disability Questionnaire, change their supination kinematics during repetitive tasks, and that they will lose 47% of their supination power.


Assuntos
Músculo Esquelético/lesões , Ruptura/fisiopatologia , Ruptura/terapia , Adaptação Fisiológica , Adulto , Idoso , Braço , Fenômenos Biomecânicos , Avaliação da Deficiência , Antebraço/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Rotação , Ombro/fisiologia , Supinação , Torque , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA