Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260395

RESUMO

Amyotrophic lateral sclerosis is the most common fatal motor neuron disease. Approximately 90% of ALS patients exhibit pathology of the master RNA regulator, Transactive Response DNA Binding protein (TDP-43). Despite the prevalence TDP-43 pathology in ALS motor neurons, recent findings suggest immune dysfunction is a determinant of disease progression in patients. Whether TDP-43 pathology elicits disease-modifying immune responses in ALS remains underexplored. In this study, we demonstrate that TDP-43 pathology is internalized by antigen presenting cells, causes vesicle rupture, and leads to innate and adaptive immune cell activation. Using a multiplex imaging platform, we observed interactions between innate and adaptive immune cells near TDP-43 pathological lesions in ALS brain. We used a mass cytometry-based whole-blood stimulation assay to provide evidence that ALS patient peripheral immune cells exhibit responses to TDP-43 aggregates. Taken together, this study provides a novel link between TDP-43 pathology and ALS immune dysfunction, and further highlights the translational and diagnostic implications of monitoring and manipulating the ALS immune response.

2.
J Virol ; 86(7): 3466-73, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278245

RESUMO

Membrane penetration by reovirus requires successive formation of two cell entry intermediates, infectious subvirion particles (ISVPs) and ISVP*s. In vitro incubation of reovirus virions with high concentration of chymotrypsin (CHT) results in partial digestion of the viral outer capsid to form ISVPs. When virions are instead digested with low concentrations of chymotrypsin, the outer capsid is completely proteolyzed to form cores. We investigated the basis for the inverse relationship between CHT activity and protease susceptibility of the reovirus outer capsid. We report that core formation following low-concentration CHT digestion proceeds via formation of particles that contain a protease-sensitive form of the µ1C protein, a characteristic of ISVP*s. In addition, we found that both biochemical features and viral genetic requirements for ISVP* formation and core formation following low-concentration CHT digestion are identical, suggesting that core formation proceeds via a particle resembling ISVP*s. Furthermore, we determined that intermediates generated following low-concentration CHT digestion are distinct from ISVPs and convert to ISVP*-like particles much more readily than ISVPs. These results suggest that the activity of host proteases used to generate ISVPs can influence the efficiency with which the next step in reovirus cell entry, namely, ISVP-to-ISVP* conversion, occurs.


Assuntos
Quimotripsina/metabolismo , Orthoreovirus de Mamíferos/química , Orthoreovirus de Mamíferos/fisiologia , Infecções por Reoviridae/enzimologia , Vírion/química , Vírion/fisiologia , Internalização do Vírus , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Cricetinae , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Orthoreovirus de Mamíferos/genética , Conformação Proteica , Infecções por Reoviridae/virologia , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA